
A hybrid GRASP/VND heuristic for the

One-Commodity Pickup-and-Delivery

Traveling Salesman Problem

Hipólito Hernández-Pérez, Inmaculada Rodŕıguez-Mart́ın,

Juan José Salazar-González∗

Revised: March 25, 2008

Abstract

We address in this paper the one-commodity pickup-and-delivery traveling sales-

man problem, which is characterized by a set of customers, each of them supplying

(pickup customer) or demanding (delivery customer) a given amount of a single prod-

uct. The objective is to design a minimum cost Hamiltonian route for a capacitated

vehicle in order to transport the product from the pickup to the delivery customers.

The vehicle starts the route from a depot, and its initial load also has to be determined.

We propose a hybrid algorithm that combines the GRASP and VND metaheuristics.

Our heuristic is compared with other approximate algorithms described in [9]. Com-

putational experiments on benchmark instances reveal that our hybrid method yields

better results than the previously proposed approaches.

Keywords: pickup and delivery, traveling salesman problem, hybrid heuristic, GRASP,

VND.

1 Introduction

The One-Commodity Pickup-and-Delivery Traveling Salesman Problem (1-PDTSP) is a

routing problem that generalizes the classical Traveling Salesman Problem (TSP). We are

∗DEIOC, Facultad de Matemáticas, Universidad de La Laguna, 38271 La Laguna, Tenerife, Spain.

Email: jjsalaza@ull.es

1



given a set of locations and the travel distances among them. One specific location is con-

sidered to be a vehicle depot, while all the others are identified with customers. There is a

unique commodity or product that has to be transported from some customers to others.

To this end, each customer is visited once by the vehicle. Customers are divided into two

groups, depending on whether they supply a given amount of product (pickup customers),

or they demand a given amount of it (delivery customers). The product collected at pickup

customers can be supplied to delivery customers. Moreover, the vehicle has a known ca-

pacity, and it must start and end its route at the depot. The 1-PDTSP consists of finding

a minimum length Hamiltonian route for the vehicle that satisfies all the customer require-

ments. It is not assumed that the vehicle leaves empty or full loaded from the depot. On

the contrary, the initial load of the vehicle also has to be determined (see [9]). We will

assume that the travel distances among locations are symmetric.

The 1-PDTSP has several practical applications in routing a single commodity. One of

them is described by Anily and Bramel [1] in the context of inventory repositioning. Con-

sider a set retailers owned by the same firm and located at different sites in a region. At a

given moment, due to the random nature of demands, some retailers may have an excess of

inventory while others are in need of additional stock. Then, the firm may decide to trans-

fer inventory from the first group of retailers to the second one. Determining the cheapest

Hamiltonian route to do so with a capacitated vehicle is exactly the 1-PDTSP. Anily and

Bramel [1] propose heuristic algorithms for the special case of the 1-PDTSP where the de-

livery and pickup quantities are all equal to one unit. This problem is called Capacitated

Traveling Salesman Problem with Pickups and Deliveries. Chalasani and Motwani [3] con-

sider the same problem with the name Q-delivery TSP. The problem with unitary pickups

and deliveries on a path or tree network has been studied by Wang, Lim and Xu [19].

Hernández-Pérez [7] is the first to introduce the 1-PDTSP. He makes a theoretical study

of the problem and presents solution methods. Hernández-Pérez and Salazar-González [8]

describe an exact branch-and-cut algorithm able to solve instances with up to 60 customers.

The same authors propose in [9] two heuristic approaches to deal with larger instances. The

first heuristic approach is a simple local search procedure developed to provide initial upper

bounds for their branch-and-cut algorithm. The second approach is a more elaborated

algorithm based on “incomplete optimization”. That is, the branch-and-cut algorithm

described in [8] is applied to a restricted search space obtained by considering only a subset

of model variables, associated to promising edges of a graph. Moreover, the branch-and-

cut execution is truncated by imposing a limit to the number of levels in the decision tree

2



exploration (see [9] for details). A primal heuristic is also embedded in the branch-and-cut

to build feasible integer solutions from the information given by the fractional solutions.

This procedure is periodically applied during the search process.

There are many other pickup-and-delivery routing problems described in the literature.

For recent surveys, we refer the reader to Savelsbergh and Sol [18], Parragh, Doerner and

Hartl [15] and [16], and Berbeglia et al. [2]. However, as observed in [16], little attention

has been paid to the 1-PDTSP. As far as we know, the only heuristic approaches are those

in [9], none of these is a metaheuristic.

The 1-PDTSP is NP-hard since it coincides with the TSP when the vehicle capacity

is large enough. Even more, the problem of checking the existence of a feasible solution is

NP-complete in the strong sense (see [7]). This is a fundamental difference with respect

to the TSP, as even just finding a feasible tour may be a very complex task. In this article

we present a hybrid heuristic method that combines a greedy randomized search procedure

(GRASP) with variable neighborhood descent (VND). The proposed algorithm is compared

with the heuristic methods described in [9]. The outcomes of the computational tests show

that the new heuristic yields better results than the previous ones, managing to improve

the best known solution for most large instances.

We introduce now the notation used throughout this article. The depot is denoted by 1

and each customer by i (i = 2, . . . , n). The set V := {1, 2, . . . , n} is the vertex set and E is

the edge set. For each pair of locations {i, j}, the travel distance (or cost) cij of traveling

between i and j is given. A non-zero demand qi associated with each customer i is also

given, being qi < 0 if i is a delivery customer and qi > 0 if i is a pickup customer. The

capacity of the vehicle is represented by Q and is assumed to be a positive number. Note

that typically Q ≤ max{∑i∈V :qi>0 qi,−∑
i∈V :qi<0 qi} on a 1-PDTSP instance. The depot

can be considered a customer by defining q1 := −∑n
i=2 qi, i.e., a customer absorbing or

providing the necessary amount of product to ensure product conservation.

The remainder of this article is organized as follows. Section 2 describes our algorithm

and its constituent parts. The computational results in Section 3 show the effectiveness of

our method, that improves the performance of the heuristics presented in [9]. Final remarks

are made in Section 4.

3



2 The algorithm

Search based heuristics for combinatorial optimization problems usually require some kind

of diversification to overcome local optimality. Multi-start methods seek diversification

by re-starting a local search procedure from multiple randomly generated initial solutions.

The GRASP (greedy randomized adaptive search procedure) metaheuristic, proposed by

Feo and Resende [4], is a multi-start procedure. Therefore it consists basically of a loop

embedding a construction phase and a local search phase. The best overall solution is

kept as the final result. The construction phase builds up a solution iteratively, randomly

selecting each time an element from a restricted candidate list (RCL). The elements in the

list are sorted according to a greedy function previously defined. This function measures the

benefit of selecting each element. The procedure is adaptive since the benefits associated

to every element are updated at each iteration of the construction phase, reflecting the

changes brought on by the selection of the previous elements. The probabilistic component

of a GRASP is characterized by a random choice of the element from the list, that is not

necessarily the top candidate of the RCL. This choice technique allows for different solutions

to be generated at each GRASP iteration. The whole strategy has been successfully applied

to solve several difficult optimization problems (see Festa and Resende [5] for a review, and

Resende and Ribeiro [17]).

On the other hand, VNS (variable neighborhood search) is based on the systematic

change of neighborhood within the search (see Mladenović and Hansen [13]). The key

idea is to change the local search operator, or neighborhood, once a local optimum is

attained. To rapidly expose the main steps of VNS, let us denote by Nk (k = 1, ..., kmax)

a set of pre-selected neighborhood structures, by x a given solution, and by Nk(x) the set

of neighbor solutions of x in the k-th neighborhood. The algorithm performs a series of

iterations until a stopping condition is satisfied. At each iteration, and starting with k = 1,

a neighbor solution x′ ∈ Nk(x) is randomly generated. Then, a local search is applied to

x′ producing a local optimum. If the local optimum improves the current solution, then

x is updated and the process is repeated. Otherwise, the algorithm resumes from x using

a higher order neighborhood, if there is any. The VND (variable neighborhood descent)

method is a variant of VNS (see [13]) where the change of neighborhood is performed in a

deterministic way. More precisely, the local minimum found when performing local search

within a neighborhood is the starting point of the local search within the next neighborhood.

The basic scheme of VND is stated in Algorithm 1.

The algorithm we propose for solving the 1-PDTSP is a hybrid algorithm that combines

4



Algorithm 1 VND(x) procedure

for k ← 1 to max do

x′ ← LocalSearch(x,Nk(x))

if x′ is better than x then

x← x′

end if

end for

return x

the GRASP and the VND paradigms. The first part consists of a GRASP where the local

search has been replaced by a VND procedure. That is, at each iteration of the GRASP

loop, the solution given by the greedy randomized algorithm is taken as the starting point

of a first VND, referred to as VND 1. This procedure is composed of two edge-exchange

neighborhood structures. The GRASP loop is iterated until a certain stopping condition is

met. Then, it follows the second part of the heuristic, a post-optimization phase consisting

of a second VND, called VND 2, that starts from the best solution found so far. The

procedure VND 2 uses two neighborhood structures based on vertex-exchange movements.

The whole scheme of the hybrid heuristic is outlined in Algorithm 2.

Algorithm 2 Hybrid heuristic for the 1-PDTSP

while stopping criterion is not satisfied do

x← GreedyRandomizedInitSol() {construction phase}
{improvement phase}
x← VND 1(x) {edge-exchange neighborhoods}
if x is feasible and improves the best solution x′ then

x′ ← x

end if

end while

{post-optimization}
x′ ← VND 2(x′) {vertex-exchange neighborhoods}
return x′

Next we describe with more detail each of the hybrid heuristic components.

5



2.1 Construction phase

To generate an initial solution we proceed in a greedy and adaptive way, starting from a

randomly selected customer and iteratively adding a new one each time until all customers

are in the solution. Recall that a partial solution corresponds to a path for the vehicle from

the first to the last customer in the solution, and that, as explained in [9], it is feasible

only if the difference between the maximum and the minimum load of the vehicle along the

path does not exceed the capacity. More precisely, let
−→
P be a path through the sequence of

customers i1, ..., ik, with k ≤ n. Let l0(
−→
P ) := 0, and let lj(

−→
P ) := lj−1(

−→
P ) + qij be the load

of the vehicle when leaving customer ij , with j = 1, ..., k. Note that lj(
−→
P ) may be negative.

Then,
−→
P is feasible only if

infeas(
−→
P ) := max

j=0,...,k
{lj(−→P )} − min

j=0,...,k
{lj(−→P )} −Q ≤ 0.

Therefore, evaluating the feasibility of a partial solution is a linear-time task.

At each iteration a customer is added at the end of the path, trying to obtain a feasible

solution of good quality, i.e., with small length. To this end, we evaluate all possible

extensions of the actual solution, and retain only feasible candidates. Next we sort them

according to their distance to the last customer in the path, and include the first l in

a restricted candidate list (RCL), being l the minimum between 10 and the number of

feasible candidates. If there are not feasible candidates at all, then the RCL is filled with

the l nearest customers to the last one in the path, being now l the minimum between 10

and the number of customers not in the solution. Finally one customer from the RCL is

chosen randomly and it is added to the solution under construction, thus extending the

path.

The travel distances used in this construction phase are redefined as was done in [9],

in order to slightly penalize the edges connecting customers of the same type (i.e., pickup

and pickup, or delivery and delivery). The idea is to favor the inclusion in the tour under

construction of edges joining customers of different type, since this increases the probability

of finding a feasible solution for the 1-PDTSP (see [9] for more explanations). However,

there is not guarantee that the procedure ends up with a feasible solution.

2.2 Improvement phase

The improvement phase is a VND algorithm (called VND 1 in Algorithm 2) that system-

atically applies two tour improvement procedures to each initial solution provided by the

construction phase. The two local search operators are adaptations of the 2-opt and 3-opt

6



edge-exchange operators described in Lin [11], and Johnson and McGeoch [10], for the TSP.

Following the ideas in Lin and Kernighan [12], for each vertex or customer i we store a list

of its nearest neighbors j, sorted in increasing order of cij , and only edges {i, j} with j in

the list are considered for inclusion in the tour when performing the exchanges. This rule

substantially reduces the search effort, and therefore the computing time. The size of the

lists of neighbors is related to the number n of customers, and it is set to 4
√

n.

On the other hand, as we mentioned before, the construction phase may end up with an

infeasible solution, that is, with a Hamiltonian route that violates the capacity constraint

for the vehicle. Consequently, VND 1 has to be able to handle infeasible solutions. If only

feasible movements are accepted, the local search can easily get stuck in a local optimum.

Therefore, we have also modified the classical 2-opt and 3-opt procedures so as to guide the

local searches towards feasible solutions, besides reducing the cost. In order to do so, we

define an accepting threshold t for the infeasibility. Edge-exchange movements leading to a

solution S with a smaller cost are accepted only if S is feasible or if its infeasibility measure is

under the threshold, i.e., infeas(S) < t. If the new solution S is feasible, then the threshold

is set to t := ε (being ε > 0 a very small value) and it is not further changed, thus forbidding

infeasible movements from that moment on. Otherwise, the threshold is updated to t :=

infeas(S). In this way, the allowed infeasibility bound is progressively reduced during the

search. The initial value of the bound is set to t := 3 max{∑i∈V :qi>0 qi,−∑
i∈V :qi<0 qi}/n.

Note that, if the solution acting as starting point of the 2-opt or 3-opt procedures

is already feasible, the described mechanism allows, at the beginning of the local search,

movements leading to less costly but infeasible solutions, although these solutions are soon

reconducted to feasibility. In this sense, our handling of the infeasibility threshold works

not only as a tool for leading the search towards feasibility, but also as a tool for escaping

from local optima.

Usually in a VND procedure, the sizes of the neighborhoods and the time complexities

of their evaluation procedures induce a natural order for them within the whole scheme, so

that smaller or faster neighborhoods are examined first. We follow this rule within VND 1,

and perform first 2-opt and then 3-opt. Inside any of them, we opt for making the best

edge-exchange movement each time, instead of just making the first improving movement.

2.3 Stopping criterion

The loop embedding the construction phase and the improvement phase is repeated until a

stopping condition is met. Recall that the number of iterations of the loop is related with

7



both running time and solution quality. In a typical GRASP implementation, the loop is

repeated a given number of times. In our case, the stopping criterion combines a limit to

the total number of iterations (set to 200), and a limit to computation time (set to 600

seconds). The limit on computation time is only relevant for the hardest instances, with

a large number of customers and a small vehicle capacity, where the local search routines

become very time consuming.

2.4 Post-optimization

Once the GRASP loop is over, a post-optimization procedure is applied to the best solution

found so far, hoping to further improving it. The post-optimization procedure is a VND

algorithm (called VND 2 in Algorithm 2) with two neighborhood structures defined by two

different vertex-exchange operators. The first one, that we call move forward operator, tries

to find a better solution, i.e., a shorter tour, by moving a customer from its current position

i in the tour, to some further position j with j > i. This implies that all customers in

positions i + 1, ..., j have to be shifted backwards one position. Customers in positions 1 to

i− 1 and j + 1 to n remain unchanged. See Figure 1.

i j

Figure 1: Move forward operator: customer in position i is moved ahead to position j

For a given customer at position i, the algorithm checks for reallocation in all possible

positions j = i + 1, ..., n. Movements leading to infeasible solutions are discarded and, in

order to save time, the first improving exchange is made, instead of looking for the best

movement. The local search continues until no further improvement is obtained.

The second operator, called move backward operator, works in a similar way, but this

time the selected customer, at position i, is moved to a previous position j in the tour,

j < i, and intermediate customers are shifted forward one position.

Both neighborhood structures have the same size and their exploration requires an

equivalent computational effort. Therefore, its order within VNS 2 does not seem to be

relevant. We decided to perform first the move forward, and then the move backward local

8



search.

Finally, let us comment that in the initial implementations of the hybrid method, these

two neighborhood structures were part of VND 1, that is, the corresponding local searches

were performed within the GRASP loop and there was not post-optimization phase. This

resulted in an increase of the solution quality, but at the cost of also augmenting considerably

the computing time. We finally opted for the flowchart in Algorithm 2 as a tradeoff between

both factors. For the same reason, some other neighborhoods based on swap and exchange

operators, that were implemented and tested, do not appear in the final algorithm.

3 Computational results

The algorithm was implemented in C++ and the program was run on a personal computer

with Intel Core 2 CPU at 2.4 GHz under Windows XP. Computational experiments were

carried on the benchmark instances used in [8] and [9]. These instances were obtained

with a random generator similar to the one proposed in Mosheiov [14], as follows. For

each value of n, n − 1 customers were generated with random coordinates in the square

[−500, 500]× [−500, 500], and with a random demand in [−10, 10]. The depot is located at

(0, 0) and has demand q1 := −∑n
i=2 qi. The travel cost cij was computed as the Euclidean

distance between i and j. The instances are characterized by the number of customers n

and the vehicle capacity Q, and they can be divided in two classes: small instances, with n

in {20, 30, 40, 50, 60}, and large instances, with n in {100, 200, 300, 400, 500}. The vehicle

capacity Q takes values in {10, 15, 20, 25, 30, 35, 40, 45, 50, 1000}. There are 10 instances for

each combination of n and Q, named A to J. All the data is available from the pickup-and

delivery site [6].

Due to the large number of instances, and in order not to overload the tables, we only

report results for three significant values of Q: 10, 20 and 40. Note that, for a given number

of customers n, the smaller Q is, the more difficult the problem gets. On the other hand,

for all instances, when Q = 1000 the solution of the 1-PDTSP coincides with the solution

of the TSP. Therefore, the three chosen values for Q are the most restrictive (Q = 10), a

rather relaxed one (Q = 40), and one intermediate (Q = 20).

The optimal solution for all small instances is known and was obtained by means of the

branch-and-cut algorithm in [8]. For large instances, only the approximate solutions given

in [9] are available. We compare our solutions with the optimal ones, in the case of small

instances, and with the best known approximate solutions, in the case of large instances.

9



We ran our hybrid algorithm 25 times over each instance, and report the best and

average solution values found over the 25 runs. The results are summarized in Tables 1 and

2. Column headings stand for:

• n: Number of customers.

• name: Instance name.

• Q: Vehicle capacity.

• OPT : Optimal solution (only for small instances).

• UB2 : Best approximate solution provided in [9] (only for large instances).

• H-best : Best solution value found by the hybrid algorithm.

• H-aver : Average solution value given by the hybrid algorithm.

• time: Average runtime, in seconds, for the hybrid algorithm.

Table 1 shows the results for small instances, i.e., those with up to 60 customers. The

best solution found by our hybrid heuristic coincides with the optimum for 145 out of the

150 instances in the table (the best algorithm in [9] does so for 118 out of the 150 instances).

These coincidences are highlighted in bold. Most of the few cases where the optimum was

not attained correspond to instances with 60 customers and Q = 10. Those are also the a

priori most difficult instances in this table, as explained before, and the ones that require

more computing time (around 2.7 seconds for the hardest). For the other instances, the

computing time is generally under one second. Note as well that, in 98 cases, also the

average solution given by the hybrid algorithm is equal to the optimum. This means that

the algorithm finds the optimum in all the 25 runs executed over those instances.

Table 2 shows the results for large instances, with n ranging from 100 to 500. The aim

of the table is to compare our heuristic solutions with those given in [9], since the optimal

values are not known. As mentioned before, two heuristic methods, called UB1 and UB2,

are described and tested in [9]. The computational results in that article show that the

second heuristic (UB2 ) clearly outperforms the first one (UB1 ) in terms of solution quality.

In particular, for all the instances in Table 2, the solution provided by UB2 is better than

the one given by UB1. Therefore, we compare our hybrid method only with UB2. For

each instance, we highlight in bold the best solution found, either by UB2 or by our hybrid

algorithm (in column H-best). It can be observed that H-best is less or equal than UB2 in

10



113 out of the 150 cases, providing the best solution known for those instances until the

moment. On the other hand, only in 13 cases the average solution (in column H-aver) given

by the hybrid method is better than UB2. This indicates the importance of running several

times the hybrid heuristic over each instance, or, alternatively, augmenting the number of

internal iterations of the GRASP loop if only one run is performed.

Regarding computing time, observe that it augments when n increases and Q decreases.

For a given value of n, the instances with Q = 10 require much more computing time than

those with Q = 20 and Q = 40. The time limit of 600 seconds is reached in some instances

with n = 500 and Q = 10, but this can still be considered a reasonable time for this type

of difficult routing problems. For all other instances in the table, the process stops because

of the limit on the number of iterations in the GRASP.

In Tables 1 and 2 we have only reported the running times of the algorithm we propose,

and not those of the algorithm UB2 presented in [9]. Table 3 intends to show how the two

algorithms compare in terms of computational time. Column UB2 gives the average time

given in [9], over the ten instances for each value of n and Q, while column H gives the

average computing time of the hybrid heuristic on the same instances. Notice that these

times are not directly comparable because the ones in column UB2 were obtained on a

different computer (an AMD PC at 1.3 GHz under Windows 98). We have made some

computational tests in order to compare the two computers, and we have concluded that

our PC is approximately 2.4 times faster than the one used in [9]. With this figure in mind,

we can derive from Table 3 that the hybrid algorithm is quicker than UB2 for instances

with Q = 20 and Q = 40, but it is not so for instances with Q = 10. This relation holds

in general for all problem sizes, although it is more noticeable for large values of n, where

running times get more appreciable. Nevertheless, the slightly larger running times of the

hybrid heuristic respect to UB2 for some instances are compensated with an improvement

in the solution quality. This is due to the diversification mechanism implicit in our heuristic

that allows to escape from local minima, which has not an equivalent in the deterministic

scheme described in [9]. In fact, we can expect the hybrid heuristic will find better solutions

if it runs for a longer time, while the same is not expected to happen with UB2.

11



Q = 10 Q = 20 Q = 40

n name OPT H-best H-aver time OPT H-best H-aver time OPT H-best H-aver time

20 A 4963 4963 4963.0 0.07 3816 3816 3816.0 0.02 3816 3816 3816.0 0.01

B 4976 4976 4976.0 0.06 4224 4224 4224.0 0.02 3942 3942 3942.0 0.02

C 6333 6333 6333.0 0.10 4492 4492 4492.0 0.04 3897 3897 3897.0 0.01

D 6280 6280 6280.0 0.07 4706 4706 4706.0 0.04 3743 3743 3743.0 0.01

E 6415 6415 6415.0 0.07 4673 4673 4673.0 0.03 4299 4299 4299.0 0.02

F 4805 4805 4805.0 0.08 4118 4118 4118.0 0.02 4118 4118 4118.0 0.02

G 5119 5119 5119.0 0.04 4369 4369 4369.0 0.02 4248 4248 4248.0 0.02

H 5594 5594 5594.0 0.06 4159 4159 4159.0 0.02 4007 4007 4007.0 0.01

I 5130 5130 5130.0 0.10 4116 4116 4116.0 0.02 4026 4026 4026.0 0.02

J 4410 4410 4410.0 0.08 3700 3700 3700.0 0.02 3678 3678 3678.0 0.02

30 A 6403 6403 6406.8 0.43 4918 4918 4918.0 0.08 4620 4620 4620.0 0.05

B 6603 6603 6603.0 0.24 5109 5109 5109.0 0.09 4529 4529 4529.0 0.05

C 6486 6486 6486.0 0.21 4901 4901 4901.0 0.08 4377 4377 4377.0 0.05

D 6652 6652 6655.1 0.40 5385 5385 5385.0 0.08 4876 4876 4876.0 0.05

E 6070 6070 6070.0 0.39 4916 4916 4916.0 0.06 4822 4822 4822.0 0.05

F 5737 5737 5737.0 0.37 4459 4459 4459.0 0.06 4390 4390 4390.0 0.05

G 9371 9371 9371.0 0.30 6672 6672 6672.7 0.16 5048 5048 5048.0 0.06

H 6431 6431 6431.2 0.33 4684 4684 4684.0 0.07 4583 4583 4583.0 0.05

I 5821 5821 5821.0 0.25 4483 4483 4483.0 0.05 4379 4379 4379.0 0.05

J 6187 6187 6187.4 0.38 4645 4645 4645.0 0.06 4421 4421 4421.0 0.05

40 A 7173 7173 7188.5 0.67 5481 5481 5481.0 0.14 5124 5124 5124.0 0.09

B 6557 6557 6568.5 0.91 5334 5334 5334.0 0.11 5315 5315 5315.0 0.09

C 7528 7528 7528.4 0.66 5775 5775 5775.0 0.22 4916 4916 4916.0 0.09

D 8059 8059 8135.6 1.00 6054 6054 6056.6 0.19 5538 5538 5538.0 0.09

E 6928 6928 6959.3 1.04 5598 5598 5598.0 0.14 5364 5364 5364.0 0.09

F 7506 7506 7590.5 0.83 5491 5491 5491.0 0.15 5059 5059 5059.0 0.09

G 7624 7624 7682.8 0.75 5588 5588 5588.0 0.14 5366 5366 5366.0 0.09

H 6791 6791 6795.7 0.83 5141 5141 5141.0 0.14 4837 4837 4837.0 0.09

I 7215 7215 7219.0 0.76 5262 5262 5262.0 0.14 4967 4967 4967.0 0.09

J 6512 6512 6513.3 0.53 5277 5277 5277.0 0.13 4939 4939 4939.0 0.09

50 A 6987 6987 6996.7 0.96 5908 5908 5908.0 0.18 5816 5816 5816.0 0.14

B 9488 9488 9512.6 1.73 7111 7111 7150.1 0.48 6249 6249 6251.1 0.20

C 9110 9110 9133.7 1.76 6962 6962 6965.0 0.46 6284 6284 6284.0 0.19

D 10260 10260 10464.3 1.82 7278 7278 7285.2 0.53 6423 6423 6423.0 0.20

E 9492 9492 9625.1 1.85 7107 7107 7133.0 0.42 6224 6224 6224.0 0.19

F 8684 8684 8773.2 1.72 6053 6053 6068.5 0.28 5453 5453 5453.0 0.15

G 7126 7126 7217.4 1.34 5968 5968 5968.0 0.20 5881 5881 5881.0 0.16

H 8885 8895 9006.5 1.46 6477 6477 6491.8 0.33 5642 5642 5642.0 0.16

I 8329 8329 8412.5 0.89 6149 6149 6149.0 0.26 5572 5572 5572.0 0.15

J 8456 8456 8666.1 1.61 6364 6364 6364.0 0.28 5915 5915 5915.0 0.15

60 A 8602 8602 8726.6 2.37 6696 6696 6726.0 0.43 6156 6156 6156.0 0.24

B 8514 8514 8683.2 2.38 6730 6730 6734.3 0.41 6524 6524 6524.0 0.23

C 9453 9453 9565.6 2.70 7081 7081 7081.5 0.56 6240 6240 6240.0 0.27

D 11059 11061 11320.6 2.62 8011 8064 8119.0 0.75 6855 6855 6855.0 0.30

E 9487 9572 9724.8 2.56 7317 7317 7342.3 0.52 6556 6556 6556.0 0.28

F 9063 9063 9437.2 2.36 6449 6449 6473.9 0.43 6154 6154 6154.0 0.24

G 8912 8967 9107.9 2.49 6882 6882 6882.0 0.48 6322 6322 6322.0 0.27

H 8424 8424 8467.3 2.19 6444 6444 6449.9 0.38 6087 6087 6087.0 0.24

I 9394 9394 9529.6 1.99 6933 6933 6949.0 0.58 6072 6072 6072.0 0.25

J 8750 8750 8956.5 2.29 7017 7017 7041.5 0.36 6651 6651 6651.0 0.23

Table 1: Heuristic results for small instances

12



Q = 10 Q = 20 Q = 40

n name UB2 H-best H-aver time UB2 H-best H-aver time UB2 H-best H-aver time

100 A 12042 11874 12087.6 8.48 8768 8616 8779.2 1.63 7938 7938 7941.8 0.60

B 13172 13288 13582.6 10.23 9629 9536 9686.9 2.51 8144 8124 8182.6 0.72

C 14063 14069 14421.3 10.27 10099 9993 10191.2 3.03 8441 8441 8514.5 0.81

D 14490 14542 14787.5 8.95 10464 10064 10340.7 3.07 8380 8264 8360.0 0.82

E 11546 11650 12502.6 6.13 8929 8838 8986.2 1.42 7960 7960 7996.5 0.58

F 12021 11734 12010.7 7.67 9056 9029 9106.2 1.63 8074 8074 8116.1 0.56

G 12170 12049 12366.9 7.82 9022 8865 9078.5 1.58 8183 8168 8189.0 0.60

H 13056 12892 13169.2 9.39 9708 9495 9681.0 2.36 7992 7992 8022.3 0.74

I 14191 14048 14390.2 7.94 10144 10005 10192.7 2.41 8484 8440 8504.1 0.71

J 13439 13430 13737.6 11.65 9835 9742 9922.7 2.56 8255 8255 8289.1 0.71

200 A 18013 18145 18564.0 36.00 13455 13422 13714.8 11.01 11136 11156 11369.3 3.42

B 18154 18520 18932.5 33.68 13242 13419 13714.8 12.32 11305 11296 11489.6 3.48

C 17305 16969 17280.3 41.01 12264 12314 12678.5 8.93 10919 10849 11038.4 3.01

D 21565 21848 22285.7 33.51 15387 15212 15548.6 24.59 12002 11802 12037.4 5.39

E 20033 19913 20643.2 39.75 14109 14066 14298.3 18.41 11276 11237 11474.7 4.70

F 22090 21949 22284.6 80.93 15105 15167 15542.0 30.87 11931 11836 11988.1 6.35

G 17956 18035 18627.7 28.58 13203 13200 13495.7 11.43 11174 11154 11302.0 3.54

H 21995 21463 22084.9 47.45 15518 15278 15571.8 26.74 12234 12088 12430.2 5.87

I 18695 18606 19184.8 34.31 13082 13338 13597.8 13.63 11272 11115 11298.1 3.66

J 19349 19273 19839.5 42.43 14043 13870 14159.4 15.80 11181 11123 11281.5 4.07

300 A 23244 23566 24052.9 112.51 16830 16920 17242.8 41.74 13670 13787 14008.1 11.32

B 23256 23187 23845.6 109.55 16844 17050 17248.4 39.31 13881 13875 14127,.2 10.95

C 22276 21800 22516.6 104.58 16548 16364 16661.1 34.11 13489 13642 13792.7 9.79

D 26434 25971 26462.1 162.95 18024 18178 18651.7 61.75 14477 14426 14733.6 14.66

E 27931 27420 27892.1 139.56 19130 18715 19088.5 86.47 14616 14521 14902.1 20.21

F 25096 24852 25278.2 153.93 18216 18126 18387.1 63.61 14390 14345 14665.7 15.30

G 24363 24308 24760.5 151.22 17490 17363 17759.4 53.70 14299 14151 14382.6 13.10

H 22869 22684 23116.5 67.49 16759 16725 16997.7 32.67 13816 13674 14047.1 9.39

I 25157 24633 25492.6 76.72 18048 17654 17996.0 60.08 14396 14232 14489.2 14.58

J 23468 23086 23530.2 100.05 17027 16811 17168.5 35.51 13759 13963 14127.7 9.58

400 A 31821 31486 31912.0 282.00 21741 21617 22042.2 198.75 16966 16939 17198.2 41.83

B 24883 25243 25606.4 204.21 18459 19021 19260.7 60.09 16027 16013 16217.0 18.56

C 29044 28942 29463.2 246.29 20827 20765 21172.0 125.79 16506 16588 16964.1 31.03

D 24639 24597 25308.6 142.84 18443 18375 18767.0 49.26 15691 15801 16033.2 15.39

E 25548 25644 26120.0 219.87 18598 18764 19153.6 64.63 15658 15638 15906.5 18.91

F 27215 27169 27755.1 273.01 20112 19941 20223.8 85.24 16085 16373 16541.0 23.52

G 24728 24626 25088.4 181.55 18695 18624 18900.5 55.50 15603 15716 15955.2 16.92

H 26191 26030 26468.8 220.74 18882 18829 19468.3 73.13 15936 15848 16236.6 20.01

I 28992 29154 29596.6 202.43 20682 20610 21120.3 132.23 16554 16477 16809.6 32.49

J 26607 26204 26916.2 231.03 18958 19478 19804.6 72.65 15678 15951 16286.3 20.52

500 A 29536 28742 29323.6 400.63 21702 21585 21758.2 121.52 17966 17840 18064.6 36.50

B 27370 27335 27711.1 332.67 20523 20762 21082.2 92.81 17161 17574 17898.5 28.87

C 31494 31108 31692.7 440.35 23034 22738 23108.7 177.94 18529 18498 18758.4 45.04

D 31752 30794 31428.4 426.51 22774 22737 23032.2 163.36 18307 18573 18838.4 44.01

E 31555 30674 31371.7 398.15 22775 22480 22812.1 192.74 18351 18335 18608.8 47.78

F 28957 29258 29812.3 263.14 21745 21679 22022.8 121.52 18101 17976 18263.6 36.48

G 27492 27198 27958.2 306.38 20325 20617 20983.3 93.22 17697 17600 17894.2 29.68

H 37185 36857 37361.1 600.00 26250 25383 25968.7 347.42 19633 19619 19881.4 79.68

I 31612 31045 31536.0 316.74 22472 22442 23083.6 172.67 18349 18322 18618.4 47.21

J 31412 31423 31877.9 425.56 22756 22517 23054.5 164.47 18446 18445 18796.7 44.57

Table 2: Heuristic results for large instances

13



small instances large instances

n Q UB2 H n Q UB2 H

20 10 0.19 0.07 100 10 29.38 8.85

20 0.05 0.03 20 18.74 2.22

40 0.05 0.02 40 3.14 0.69

30 10 0.61 0.33 200 10 151.96 41.76

20 0.28 0.08 20 123.89 17.37

40 0.06 0.05 40 51.30 4.35

40 10 2.21 0.80 300 10 285.56 117.86

20 0.45 0.15 20 364.38 50.90

40 0.12 0.09 40 194.84 12.89

50 10 6.60 1.51 400 10 453.64 220.40

20 1.81 0.34 20 423.05 91.73

40 0.43 0.17 40 290.91 23.92

60 10 8.18 2.40 500 10 708.95 391.47

20 3.34 0.49 20 836.03 164.77

40 0.56 0.26 40 350.61 43.98

Table 3: Time comparison

Q = 10 Q = 20 Q = 40

n name n-improv %-improv n-improv %-improv n-improv %-improv

100 A 23 0.45 15 0.30 7 0.11

B 23 0.42 24 0.36 16 0.20

C 24 0.33 23 0.38 18 0.28

D 24 0.35 24 0.57 17 0.34

E 25 0.22 18 0.41 16 0.33

F 23 0.20 16 0.37 23 0.20

G 23 0.47 22 0.33 12 0.17

H 21 0.22 24 0.28 18 0.31

I 17 0.24 21 0.32 13 0.17

J 25 0.43 22 0.29 13 0.15

Table 4: Post-optimization contribution to the final solution

Figure 2 depicts the evolution of the objective function value respect to the number

of iterations for an instance with 60 customers and a vehicle with capacity equal to 10.

The graphic shows how the objective value is progressively updated each time a better

solution is found during the GRASP loop. Then the post-optimization procedure is applied

and it manages to further improve the solution, giving the optimum for this particular

instance. This can be considered the common behaviour of the hybrid heuristic, although

it is also possible, due to the random component, to find the best solution already in the

first iterations, or that the post-optimization phase fails to improve the solution given by

the GRASP loop.

Finally, Table 4 illustrates the effect of the post-optimization phase, consisting of VND 2,

on the solution quality for the instances with 100 customers. Column heading n-improv

14



6600

6700

6800

6900

7000

7100

7200

7300

0 50 100 150 200 250

objval

iter

n60q20a

····

······
·················
···················································································································

···························································
·

Figure 2: Evolution of the objective value versus number of iterations for an instance with

n = 60 and Q = 20.

stands for the number of runs, out of 25, where the post-optimization succeeds to improve

the solution given by the GRASP loop, while column heading %-improv stands for the

average percentage of improvement obtained. The results show that the post optimization

phase is effective in most cases, although it produces a limited solution improvement (typ-

ically under 1%). Moreover, it seems to be more useful on those instances with the most

restrictive vehicle capacity (Q = 10).

Considering only the percentage of improvement over the GRASP solution, it might

appear that the post-optimization phase could be removed. However, in terms of absolute

value, the obtained improvement makes the difference between beating the solution given

by UB2 or not. In this sense, for 22 out of the 30 instances in Table 4 the solution given

by the GRASP loop is less or equal than that given by UB2. This figure raises to 26 out of

30 when the post-optimization phase is applied.

4 Conclusions

This article presents an efficient hybrid heuristic algorithm to tackle the one-commodity

pickup-and-delivery traveling salesman problem. Hybrid metaheuristics have received con-

siderable attention in recent years, and have proven to be highly useful for solving difficult

optimization problems. The method we propose uses the basic structure of GRASP to

15



better sampling the solution space. The GRASP local search phase is replaced by a VND

with two neighborhood structures based on the classical 2-opt and 3-opt operators, con-

veniently modified to cope with the feasibility requirement for 1-PDTSP tours. A second

VND procedure is applied to the best solution found by the GRASP in order to further

improve it. The neighborhood structures in this second VND are related to vertex-exchange

movements. Both VND algorithms work as intensification mechanisms, while the random

multistart provides diversification to the search.

The performance of the GRASP/VND hybrid heuristic is evaluated on benchmark in-

stances with different sizes and degrees of difficulty. The results are very satisfactory,

specially when compared to the ones in the literature. Moreover, the algorithm appears

robust in terms of quality and computational effort. The conclusion is that the proposed

method is competitive with the other approaches previously presented, managing to find

the optimal solution in 96.7 per cent of the small instances tested, and providing the best

solution until now in 75.3 per cent of the large instances.

These results are very encouraging and, as future research work, we consider the applica-

tion of a similar hybrid methodology to related pickup-and-delivery problems. In particular,

a natural extension of the 1-PDTSP is the multi-commodity pickup-and-delivery traveling

salesman problem. In this problem, there are m different products and each customer may

supply and/or demand an amount of each product. As in the 1-PDTSP, a capacitated ve-

hicle must visit each customer exactly once, and the objective is to find a minimum length

tour. Another interesting variant is the one-to-one multi-commodity pickup-and-delivery

traveling salesman problem, where each product has exactly one origin and one destination

customer. Based on our experience with the 1-PDTSP, we think that the design of hybrid

heuristics for these problems is a worth pursuing research direction.

Acknowledgements

This work has been partially supported by “Ministerio de Educación y Ciencia”, Spain

(research project MTM2006-14961-C05-03).

References

[1] Anily S, Bramel J. Approximation algorithms for the capacitated traveling salesman

problem with pickups and deliveries. Naval Research Logistics 1999; 46: 654–670.

16



[2] Berbeglia G, Cordeau J-F, Gribkovskaia I, Laporte G. Static pickup and delivery prob-

lems: a classification scheme and survey. TOP 2007; 15: 45–47.

[3] Chalasani P, Motwani R. Approximating capacitated routing and delivey problems.

SIAM Journal on Computing 1999; 28: 2133–2149.

[4] Feo TA, Resende MGC. Greedy randomized adaptative search procedures. Journal of

Global Optimization 1995; 6: 109–133.

[5] Festa P, Resende MGC. GRASP: an annotated bibliography. In: Ribeiro CC, Hansen

P (Eds.). Essays and Surveys in Metaheuristics. Kluwer Academic Publishers, 2002.

[6] Hernández-Pérez H. Pickup-and-delivery site. http://webpages.ull.es/users/

hhperez/PDsite.

[7] Hernández-Pérez H. Traveling salesman problems with pickups and deliveries. Diser-

tation, University of La Laguna, Spain, 2004.

[8] Hernández-Pérez H, Salazar-González JJ. A branch-and-cut algorithm for a Traveling

Salesman Problem with Pickup and Delivery. Discrete Applied Mathematics 2004; 145:

126–139.

[9] Hernández-Pérez H, Salazar-González JJ. Heuristics for the One-Commodity Pickup-

and-Delivery Traveling Salesman Problem. Trasportation Science 2004; 38: 245–255.

[10] Johnson DS, McGeoch LA. The traveling salesman problem: A case study in local

optimization. In: Aarts EJL, Lenstra JK (Eds.). Local Search in Combinatorial Opti-

mization. Chichester, UK: John Wiley and Sons, 1997.

[11] Lin S. Computer solutions of the traveling salesman problem. Bell System Technical

Journal 1965; 44: 2245-2269.

[12] Lin S, Kernighan BW. An effective heuristic algorithm for the traveling salesman prob-

lem. Operations Research 1973; 21: 498-516.

[13] Mladenović N, Hansen P. Variable neighborhood search. Computers & Operations Re-

search 1997; 24: 1097–1100.

[14] Mosheiov G. The travelling salesman problem with pick-up and delivery. European

Journal of Operational Research 1994; 79: 299-310.

17



[15] Parragh SN, Doerner K, Hartl RF. A survey on pickup and delivery models Part I:

transportation between customers and depot. Working paper, Chair of Production and

Operations Management, University of Vienna, 2006.

[16] Parragh SN, Doerner K, Hartl RF. A survey on pickup and delivery models Part II:

transportation between pickup and delivey locations. Working paper, Chair of Produc-

tion and Operations Management, University of Vienna, 2006.

[17] Resende MGC, Ribeiro CC. Greedy randomized adaptative search procedures. In:

Glover F, Kochenberger GA (Eds.). Handbook of Metaheuristics. Norwell: Kluwer’s

International Series in Operations Research & Management Science, 2002.

[18] Savelsbergh MWP, Sol M. The general pickup and delivery problem. Transportation

Science 1995; 29: 17–29.

[19] Wang F, Lim A, Xu Z. The one-comodity pickup and delivery travelling salesman

problem on a path or a tree. Networks 2006; 48: 24–35.

18


