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Abstract

The “multi-commodity Pickup-and-Delivery Traveling Salesman Problem” (m-PDTSP) is a gener-
alization of the well-known “Traveling Salesman Problem” in which cities correspond to customers
providing or requiring known amounts of m different products, and the vehicle has a known capac-
ity. Each customer must be visited exactly once by the vehicle serving the demands of the different
products while minimizing the total travel distance. It is assumed that a unit of a product collected
from a customer can be supplied to any other customer that requires this product. We introduce
a Mixed Integer Linear Programming model for the m-PDTSP, discuss a classical decomposition
technique, describe valid inequalities to strengthen the linear programming relaxation of the model,
and detail separation procedures to develop a branch-and-cut procedure. Computational exper-
iments on randomly generated instances with up to 30 customers, 3 products and small vehicle
capacities are analyzed.

Keywords: Traveling Salesman; Pickup-and-Delivery; Branch-and-Cut; Multi-commodity Flow.

1. Introduction

Many practical applications in transportation involve routing and delivery optimization prob-
lems. This paper considers the following generalization of the Traveling Salesman Problem (TSP).
A finite set of cities is given and the travel cost from one city to another city is assumed to be
known, and not necessarily symmetric. One specific city is considered to be a depot while the
other cities are identified as customers. Each customer requires some given quantities of different
products and/or provides some given quantities of other different products. A unit of a product
collected from a customer can be supplied to any customer that requires this product. It is assumed
that the vehicle has a fixed capacity and must start and finish the route at the depot. The route
must be a Hamiltonian tour through all the cities. Then, the multi-commodity Pickup-and-Delivery
Traveling Salesman Problem (m-PDTSP) is the problem of finding a route for the vehicle such that
it picks up and delivers all the quantities of the different products satisfying the vehicle-capacity
limitation and minimizing the total travel cost. Since each city is visited once, each unit of a
product loaded on the vehicle stays on the vehicle until it is delivered to its destination. For that
reason we say that the m-PDTSP is a non-preemptive problem.
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Figure 1: m-PDTSP routes.

Figure 1(a) shows an example of a feasible route for an instance involving four cities, two
products and a vehicle with a capacity of two units. Customer 2 requires one unit of Product 1,
Customer 3 delivers two units of Product 2, and Customer 4 delivers one unit of Product 1 and
requires one unit of Product 2. Thus, the depot (represented by 1) can be seen as a customer
(Customer 1) requiring one unit of Product 2.

The initial load of any product in the vehicle when leaving the depot is unknown, and must
be determined within the optimization problem. In the route in Figure 1(a), the vehicle leaves the
depot with one unit of Product 1 to be delivered at Customer 2. This extra unit of Product 1 is
returned by the vehicle to the depot at the end of the route.

Some variants of the m-PDTSP where the initial load of any product is fixed can also be
solved through the approach described in this paper with a slight modification of the instance.
For example, if one wants to impose that the vehicle leaves the depot with zero load then the
modification consists of introducing a dummy product and replacing the depot by two customers:
one customer delivers a demand of the dummy product equal to the vehicle capacity, and the
other customer requires this demand of the dummy product. The travel cost between the dummy
customers is defined by a low number so a min-cost route visits the pickup dummy customer
immediately after the delivery one. Figure 1(b) illustrates the transformation of the 2-PDTSP
instance in Figure 1(a) when the initial load of the vehicle leaving the depot is required to be zero.
It has five cities, three products and a vehicle capacity of two units. The depot in the restricted
2-PDTSP instance has been replaced by the dummy customers 1′ and 1′′ in the 3-PDTSP. An
optimal route for the (unrestricted) 3-PDTSP instance corresponds to an optimal route for the
restricted 2-PDTSP instance. The transformation is also possible without the dummy product, as
proposed in [19] for m = 1.

An application of the m-PDTSP occurs in the context of inventory repositioning. Assume
that a set of retailers are geographically dispersed in a region. Often, due to the random nature
of the demands, some retailers have an excess of inventory of some products while others have
such strong sales that they need additional stock. In many cases the firm may decide to transfer
inventory from retailers that have experienced below average sales to those that have experienced
above average sales. Determining the cheapest way to execute a given stock transfer (with the
requirement that each localization has to be visited exactly once) is the m-PDTSP. Anily and
Bramel [1] give applications for a problem related to the m-PDTSP, and these applications are
also valid for the m-PDTSP.
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Another application arises in the context of a self-service bike hiring system, where every night a
capacitated vehicle must visit the bike stops in a city to collect or deliver bikes to restore the initial
configuration of the system. Chemla et al. [11] and Raviv et al. [24], among others, approached
the case where the bikes are all identical as a problem related to the 1-PDTSP. When there are
different types of bikes (for example, with and without baby chairs) the problem is related to the
m-PDTSP.

A particular case of the 2-PDTSP is the Traveling Salesman Problem with Pickups and De-
liveries (TSPPD). In the TSPPD the customers are divided in two types, pickup customers and
delivery customers, each one with a given demand of a product. There is a vehicle with a given
capacity originally stationed in the depot. Travel costs are known. The total amount of product
collected from pickup customers must be delivered only to the depot, and the product collected
from the depot must be moved to the delivery customers. For example, this is the case when empty
bottles must be collected from customers and taken to a warehouse, and full bottles must be de-
livered from the warehouse to the customers. Mosheiov [23] introduces the TSPPD and proposes
applications and heuristic approaches. Anily and Mosheiov [2] present approximation algorithms
for the TSPPD, here renamed TSP with Pickups and Backhauls (TSPPB), and Gendreau et al.
[13] propose several heuristics tested on instances with up to 200 customers. Baldacci et al. [5]
deal with the same problem, here named TSP with Delivery and Collection constraints (TSPDC),
and present an exact algorithm based on a two-commodity network flow formulation which was
able to prove the optimality of some TSPPD instances with 150 customers. Hernández-Pérez and
Salazar-González [18] present a heuristic algorithm solving instances with up to 500 customers
based on a transformation procedure of a TSPPD instance into a 1-PDTSP instance, and in [19]
they present a branch-and-cut algorithm for the exact solution of TSPPD instances with up to 200
customers.

The literature have also addressed many other related problems. We now mention some articles
dealing with one-commodity variants. Chalasani and Motwani [10] study the special case of the
1-PDTSP where the delivery and pickup quantities are all equal to one unit. This problem is called
Q-delivery TSP where Q is the capacity of the vehicle. Anily and Bramel [1] consider the same
problem with the name Capacitated TSP with Pickups and Deliveries. Chalasani and Motwani
[10] propose a 9.5-approximation algorithm. Anily and Bramel [1] propose an algorithm with a
better worst-case ratio. For the 1-PDTSP, Hernández-Pérez and Salazar-González [19] present an
exact algorithm solving instances with up to 200 customers. Hernández-Pérez et al. [16] describe
an hybrid algorithm that combines Greedy Randomized Adaptive Search Procedure and Variable
Neighborhood Descent paradigms. Zhao et al. [27] propose a Genetic Algorithm that on average
gives better results. Finally, Hanafi et al. [15] describe a General Variable Neighborhood Search
improving the best-known solution for all benchmark instances and solving instances with up to
1000 customers.

The one-to-one m-PDTSP is a particular case of the m-PDTSP where each commodity has one
origin and one destination. It can be considered as a DARP without time windows requirements. In
that sense, in the one-to-one m-PDTSP one assumes that the initial load of the vehicle when leaving
the depot is zero unless the depot is the source of a commodity. Hernández-Pérez and Salazar-
González [20] describe a branch-and-cut algorithm for this problem solving instances involving up
to 24 customers and 15 commodities. Rodŕıguez-Mart́ın and Salazar-González [25] propose and
compare several metaheuristic approaches to solve instances with up to 300 customers and 600
commodities.
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The TSP with Precedence Constraints (TSPPC), also known as the Sequential Ordering Prob-
lem, is a particular case of the one-to-one m-PDTSP where there is no vehicle capacity. Bianco
et al. [8] describe a dynamic programming algorithm for TSPPC. Balas et al. [3], Ascheuer et al.
[4] and Gouveia and Pesneau [14] have proposed exact approaches based on Integer Programming
formulations.

A problem closely related to the m-PDTSP which includes many sources and many destinations
with various commodities is the Non-Preemptive Capacitated Swapping Problem (NCSP) proposed
by Erdoǧan et al. [12]. In the NCSP there is one depot and a set of customers. Each customer
may supply one item of a commodity and/or demand one item of another commodity. Every item
of each commodity has a weight. When a customer supplies and demands one item of the same
commodity the customer is called a transshipment customer. The items cannot be split and they
cannot be dropped off in an intermediate customer. However, a transshipment customer can be
used as an intermediate customer for the commodity supplied and demanded by this customer.
The problem consists of finding a minimum cost route to satisfy all customers. Differences in this
problem with respect to the m-PDTSP are: (1) a feasible solution may not be a Hamiltonian
circuit; (2) each customer can only supply and/or demand one unit of one product; (3) there exist
transshipment customers; (4) each commodity has a weight. Erdoǧan et al. [12] describe a branch-
cut-algorithm to solve the NCSP. Bordenave et al. [9] describe a branch-and-cut algorithm to solve
the particular case of the NCSP where the vehicle capacity is equal to one unit and all the item
weights are also one unit.

The literature addresses many other routing problems to pickup and deliver products. Savels-
bergh and Sol [26] present a survey that summarizes the results up to 1995. More recently, Berbeglia
et al. [6] and Berbeglia et al. [7] give a classification of the static and dynamic versions of pickup-
and-delivery problems, respectively.

This article is structured as follows. Section 2 describes a mathematical formulation and a
decomposition method for the m-PDTSP. Section 3 shows inequalities to strengthen the formula-
tion. Section 4 proposes separation procedures for the new inequalities. Finally, Section 5 discusses
different strategies to solve the problem and analyzes computational results.

2. Mathematical Model

This section provides a mathematical model for the m-PDTSP on a complete directed graph
G = (V,A). The node set V = {1, . . . , n} represents the customers, included the depot which is
denoted by 1. For each pair of customers i and j we have the arc a = (i, j) ∈ A and a travel cost
cij . Let K = {1, . . . ,m} be the set of products. For each customer i ∈ V and each product k ∈ K
let qki be the demand of product k associated with customer i. When qki > 0 customer i offers qki
units of product k and when qki < 0 customer i requires −qki units of product k. We assume that∑

i∈V q
k
i = 0 for all k ∈ K, i.e., each product is conserved through the route. The capacity of the

vehicle is denoted by Q.
To provide a mathematical model for the m-PDTSP, we introduce a 0-1 variable for each arc

a ∈ A:

xa :=

{
1 if and only if a is routed by the vehicle,

0 otherwise,

and a continuous variable for each arc a ∈ A and for each product k ∈ K:

fka := load of product k in the vehicle when going through arc a.
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Given S′, S′′ ⊂ V such that S′ ∩ S′′ = ∅, we denote by A(S′ : S′′) the set of arcs {(i, j) : i ∈
S′ and j ∈ S′′}. For a subset S ⊂ V we use δ+(S) instead of A(S : V \ S) and δ−(S) instead of
A(V \ S : S). Finally, for a subset A′ ⊆ A we write x(A′) instead of

∑
a∈A′ xa.

Then the m-PDTSP can be formulated as:

min
∑
a∈A

caxa (1)

subject to

x(δ−({i})) = 1 for all i ∈ V (2)

x(δ+({i})) = 1 for all i ∈ V (3)

x(δ+(S)) ≥ 1 for all S ⊂ V (4)

xa ∈ {0, 1} for all a ∈ A (5)∑
a∈δ+({i})

fka −
∑

a∈δ−({i})

fka = qki for all i ∈ V and k ∈ K (6)

fka ≥ 0 for all a ∈ A and k ∈ K (7)∑
k∈K

fka ≤ Qxa for all a ∈ A. (8)

Model (1)–(5) captures the TSP aspect of the m-PDTSP. Constraints (6) impose the load
conservation for each commodity, and constraints (7) and (8) impose that the vehicle load must
be non-negative and less than or equal to Q. This model does not fix the initial load of the vehicle
when leaving the depot. This load is determined a-posteriori by

∑
k∈K

∑
a∈δ+({1}) f

k
a .

The xa variables of (1)–(8) represent a Hamiltonian circuit in G, but not all Hamiltonian
circuits in G may define a feasible m-PDTSP solutions. The reason is the vehicle capacity. When
Q is large enough (for example larger than the sum of all the pickup demands) the m-PDTSP is
the TSP. However, this is not the case when the demand of a commodity by a customer (e.g. the
depot) is Q. This situation forces the vehicle to enter or leave this customer (depot) with zero
load, and therefore it imposes precedence constraints between the other customers. For example,
a customer i that requires 5 units of a commodity k (i.e., qki = −5) must be visited after a set of
customers offering at least 5 units of the commodity k. Depending on these precedence constraints,
model (1)–(8) could be infeasible in this situation. Indeed, as mentioned in the introduction, the
m-PDTSP can also be used to solve a capacitated version of the TSPPC.

3. Strengthening the m-PDTSP model

A better model than (1)–(8) can be given by tightening the bounds on the continuous variables,
projecting out these variables, and introducing new valid inequalities exploiting the nature of the
m-PDTSP solutions.

3.1. Strengthening the bounds on the continuous variables

The amount of units of commodity k in the vehicle when going from customer i to customer
j (i.e., fkij) must satisfy 0 ≤ fkij ≤ Q if the arc (i, j) is routed; but it must also satisfy qki ≤ fkij
(the vehicle must transport the load picked up from customer i) and −qkj ≤ fkij (the vehicle must
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transport the load delivered to customer j). Hence, fkij ≥ max{qki ,−qkj , 0} if xij = 1. Reciprocally,

it must satisfy fkij ≤ Q+min{qki ,−qkj , 0} if xij = 1. On the other hand, the flow of all commodities

through arc (i, j) must satisfy
∑

k∈K f
k
ij ≤ Q + min{0,

∑
k∈K q

k
i , −

∑
k∈K q

k
j } (the vehicle must

have enough free space to pick up the load from customer i and j). Therefore, inequalities (7) and
(8) are strengthened by

max{qki ,−qkj , 0}xij ≤ fkij ≤
(
Q+ min{qki ,−qkj , 0}

)
xij for all (i, j) ∈ A and k ∈ K (9)

and ∑
k∈K

fkij ≤

(
Q+ min

{∑
k∈K

qki ,−
∑
k∈K

qkj , 0

})
xij for all (i, j) ∈ A. (10)

As a consequence, variable xij is fixed to zero when

∑
k∈K

max{qki ,−qkj , 0} > Q+ min

{∑
k∈K

qki ,−
∑
k∈K

qkj , 0

}
. (11)

For example, if m = 2, Q = 1, q1i = 1, q2i = q1j = 0 and q2j = −1 then the arc (i, j) cannot be
routed. However, the reverse arc (j, i) can be routed.

3.2. Benders’ inequalities

The Integer Mixed Linear Programming model (1)–(6) and (9)–(10) motivates a method to
solve the m-PDTSP. However, the main drawback of this model is the large number of continuous
variables, which are only necessary to check the feasibility of a vector x.

Let us now give an alternative model based on projecting out the continuous variables by
applying a Benders’ decomposition technique. Observe that the equations in (6) can be relaxed
to inequalities without adding new solutions. Then, according to Farkas’ Lemma, the polytope
described by (6)–(8) for a fixed vector x is feasible if and only if all extreme rays of the cone

αki − αkj ≤ β(i,j) for all (i, j) ∈ A and k ∈ K (12)

αki ≥ 0 for all i ∈ V and k ∈ K (13)

βa ≥ 0 for all a ∈ A (14)

satisfy ∑
a∈A

Qβaxa ≥
∑
k∈K

∑
i∈V

αiq
k
i . (15)

Inequalities (15) are called Benders’ inequalities and they can be strengthened if the decomposition
is applied to the linear system with (9)–(10) instead of (7)–(8). However, preliminary computational
results show that the tighter system needs more time to be solved while the linear programming
relaxations are no better with the replacement. Also with the replacement we loose the possibility of
rounding up the right-hand side coefficients in some cases and the notation becomes more complex.
For that reason we use (7)–(8) in this section.

When m = 1 Hoffman [21] gives a simple characterization of all the extreme rays of cone (12)–
(14). Unfortunately a similar result is unknown when m > 1. Motivated by Mirchandani [22], the
following theorem describes some extreme rays with 0-1 coefficients of the cone (12)–(14).
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Theorem 3.1. (i) For each a′ ∈ A, let (α, β) be the vector defined by αki = 0 for all i ∈ V and
for all k ∈ K, βa = 0 for all a ∈ A \ {a′} and βa′ = 1. This vector is an extreme ray of cone
(12)–(14).

(ii) For each k′ ∈ K, let (α, β) be the vector defined by αk
′
i = 1 for all i ∈ V , αki = 0 for all i ∈ V

and k 6= k′ and βa = 0 for all a ∈ A. This vector is an extreme ray of cone (12)–(14).
(iii) For each sorted collection of subsets S = (S1, . . . , Sm), Sk ⊂ V for all k ∈ K (not all empty

subsets), let (α, β) be the vector defined by αki = 1 for all i ∈ Sk and k ∈ K, αki = 0 for all i ∈
V \Sk and k ∈ K, βa = 1 for all a ∈

⋃
k∈K δ

+(Sk) and βa = 0 for all a ∈ A\
(⋃

k∈K δ
+(Sk)

)
.

This vector is a ray of the cone (12)–(14).
(iv) All the 0-1 extreme rays of the cone (12)–(14) are the ones described in (i), (ii) and (iii).

Proof: Obviously, (i) holds.
Proof of (ii). Let (α, β) be a vector defined as indicated in (ii). It satisfies the conditions

of cone (12)–(14). Thus it is a ray. Let us suppose that there are vectors (α̂, β̂) and (ᾱ, β̄)
such that (α, β) = (α̂, β̂) + (ᾱ, β̄). As all variables are greater or equal than 0 (equations (13)
and (14)), α̂ki = ᾱki = 0 for all k 6= k′ and i ∈ V , and β̂a = β̄a = 0 for all a ∈ A. If there
is a i′ ∈ V with α̂k

′
i′ = l > 0, by equation (12) we get that α̂k

′
i = l for all i ∈ V , and then

(α, β) = l(α̂, β̂) + (1− l)(ᾱ, β̄). Otherwise, if there is not a customer i′ ∈ V with α̂k
′
i′ = l > 0 then

(α̂, β̂) is vector 0.
Proof of (iii). Vector (α, β) defined in (iii) satisfies (12)–(14), because for each k, if i ∈ Sk and

j ∈ V \ Sk then αki − αkj = 1 and β(i,j) = 1 (since (i, j) ∈ δ+(Sk)); otherwise αki − αkj ≤ 0.

Proof of (iv). Let vector (α, β) be such that αki ∈ {0, 1} for all k ∈ K and for all i ∈ V and
βa ∈ {0, 1} for all a ∈ A. If αki = 0 for all k ∈ K and for all i ∈ V then (α, β) is as (i) or can be
decomposed by two or more vectors of (i). If βa = 0 for all a ∈ A, there exists a k′ ∈ K and i′ ∈ V
such that αk

′
i′ = 1. Then, αk

′
i = αk

′
i′ = 1 for all i ∈ V by equation (12) and (α, β) is as (ii) or can

be decomposed by two or more vectors of (ii). Finally, let (α, β) such that there are k′ ∈ K, i′ ∈ V
and a′ ∈ A with αk

′
i′ = 1 and βa′ = 1. We define the sets Sk = {i ∈ V : αki = 1} for k ∈ K. If there

is a k′ such that Sk
′

= V then the vector (α̂, β̂) with α̂ki = αki for all k 6= k′ and all i ∈ V , α̂k
′
i = 0

for all i ∈ V and β̂a = βa is a ray and (α, β) can be decomposed by (α̂, β̂) and a ray of form (ii).
Thus, by equation (12), βa = 1 for all a ∈

⋃
k∈K δ

+(Sk). If there is a′ ∈ A \
(⋃

k∈K δ
+(Sk)

)
with

βa′ = 1 then the ray can be decomposed by a ray of form (iii) and one or more rays of form (i).
Therefore, βa = 0 for all a ∈ A \

⋃
k∈K δ

+(Sk) and the (α, β) is of form (iii). �

Extreme rays of cone (12)–(14) with no 0-1 coefficients exist. An example for n = 4 and m = 2
is the vector (α, β) defined by α1

1 = β(1,2) = 2, α1
3 = α1

4 = α2
1 = α2

3 = β(1,3) = β(1,4) = β(3,2) =
β(3,4) = β(4,2) = 1 and α1

2 = α2
2 = α2

4 = β(2,1) = β(2,3) = β(2,4) = β(3,1) = β(4,1) = β(4,3) = 0. This
example was found using the software PORTA.

Theorem 3.1 characterizes some inequalities in (15). In particular, each collection of customer
subsets S = (S1, . . . , Sm) defines the following valid inequality for m-PDTSP:

x
(
∪k∈Kδ+(Sk)

)
≥ 1

Q

∑
k∈K

∑
i∈Sk

qki . (16)

Observe that, by considering the collection (V \S1, . . . , V \Sm) and because x(δ+(S)) = x(δ−(S))
for any customer set S, the family of inequalities (16) also contains:

x
(
∪k∈Kδ+(Sk)

)
≥ − 1

Q

∑
k∈K

∑
i∈Sk

qki .
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Therefore, inequalities (16), with the right-hand side replaced by its absolute value and rounded
up to the next integer value, give the following valid inequalities for m-PDTSP:

x
(
∪k∈Kδ+(Sk)

)
≥

 1

Q

∣∣∣∣∣∣
∑
k∈K

∑
i∈Sk

qki

∣∣∣∣∣∣
 . (17)

Using the degree equations (2) and (3) these inequalities can be rewritten as follows:

x
(
A(∪k∈KSk) \ ∪k∈Kδ+(Sk)

)
≤
∣∣∣∪k∈KSk∣∣∣−

 1

Q

∣∣∣∣∣∣
∑
k∈K

∑
i∈Sk

qki

∣∣∣∣∣∣
 . (18)

3.3. Infeasible Paths

We describe a sufficient condition to detect whether a path cannot be part of a feasible solution.
This issue is relevant because infeasible paths induce valid inequalities.

Extending the notation introduced in [18] for the 1-PDTSP, let us consider a path
−→
P defined

by the customer sequence v1, . . . , vs for s ≤ n. For simplicity of notation, we also use
−→
P to denote

the set of arcs {(v1, v2), . . . , (vs−1, vs)}. Let lki (
−→
P ) := lki−1(

−→
P ) + qkvi be the load of the vehicle

when coming out from vi if the vehicle follows this path and enters customer v1 with load lk0(
−→
P ).

Notice that lki (
−→
P ) could be negative if lk0(

−→
P ) = 0 and, therefore, the minimum quantity of load of

commodity k for a feasible solution through the path
−→
P is −minsi=0{lki (

−→
P )}. With this notation,

a path
−→
P is infeasible if

s
max
i=0

{∑
k∈K

lki (
−→
P )

}
−
∑
k∈K

s
min
i=0

{
lki (
−→
P )
}
> Q. (19)

Note that the left hand side of the inequality does not depend on the initial loads lk0(
−→
P ) for k =

1, . . . ,m. For example, if l10(
−→
P ) increases in one, then maxsi=0

{∑
k∈K l

k
i (
−→
P )
}

and
∑

k∈K minsi=0

{
lki (
−→
P )
}

increase one also, but the difference remains the same.

A Hamiltonian tour x∗ is infeasible for the m-PDTSP if it contains an infeasible path
−→
P . The

literature provides a simple valid inequality which is violated by x∗ and which is the following:∑
a∈
−→
P

xa ≤ s− 2, (20)

We next observe that for the m-PDTSP there is a stronger inequality of type (17).

Let i0 be the index where
∑

k∈K l
k
i (
−→
P ) is maximum over i, and let i1, . . . , im be the indices where

lki (
−→
P ) are minimum for each k ∈ K, respectively. As x∗ is a Hamiltonian tour, we may assume that

i0 = s, i.e.
∑

k∈K l
k
i (
−→
P ) is maximum in the last customer of the path. Let Sk = {vik+1, . . . , vs}

for all k ∈ K. Observe that

∑
i∈Sk

qki = lks (
−→
P )−

ik∑
j=1

qkvj = lks (
−→
P )− lkik(

−→
P ).
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2 3 4 5

l1∗(
−→
P ) = 0 −1 0 −1 0

l2∗(
−→
P ) = 0 −1 0 0 +1

l3∗(
−→
P ) = 0 +1 +1 +1 +1∑

k l
k
∗(
−→
P ) = 0 −1 +1 0 +2

(−1,−1,+1) (+1,+1, 0) (−1, 0, 0) (+1,+1, 0)

Figure 2: Infeasible path when m = 3 and Q = 3.

Therefore  1

Q

∑
k∈K

∑
i∈Sk

qki

 =

⌈
1

Q

(∑
k∈K

lks (
−→
P )−

∑
k∈K

lkik(
−→
P )

)⌉
≥ 2

and
x∗
(
∪k∈Kδ+(Sk)

)
= 1.

As a consequence, x∗ violates the inequality (17) defined by the collection S = (S1, . . . , Sm).
For example, consider a m-PDTSP instance with m = Q = 3 and Customers 2, 3, 4 and 5

with demand vectors (−1,−1,+1), (+1,+1, 0), (−1, 0, 0) and (+1,+1, 0), respectively. The path
defined by the customer sequence 2, 3, 4 and 5 is infeasible because

s
max
i=0

{
m∑
k=1

lki (
−→
P )

}
−

m∑
k=1

s
min
i=0

{
lki (
−→
P )
}

= 4 > Q.

Moreover, i0 = 4, i1 = i2 = 1 and i3 = 0 are the indices where the maximum and the minima are
achieved. Then, subsets S1 = S2 = {3, 4, 5} and S3 = {2, 3, 4, 5} define a violated inequality (17):
Figure 2 illustrates the calculations done in this example. This example shows a route violating
the inequality (20) defined by the path 2, 3, 4, 5, i.e.:

x23 + x34 + x45 ≤ 2,

This route also violates the stronger inequality (17) defined by subsets S1 = S2 = {3, 4, 5} and
S3 = {2, 3, 4, 5}, which can be rewritten as in (18), i.e.:

x23 + x24 + x25 + x34 + x35 + x43 + x45 + x53 + x54 ≤ 2.

3.4. Capacity Constraints

An instance of the m-PDTSP can be relaxed to be an instance of the 1-PDTSP and this
relaxation can be done in several ways. Given a non-empty subset of products K ′ ⊆ K, let qi =∑

k∈K′ q
k
i . All valid inequalities for the 1-PDTSP instance where qi is the demand of customer i are

valid inequalities for the original m-PDTSP instance. The capacity inequalities for the 1-PDTSP
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are already in (17). For example, this occurs for a subset S ⊂ V with K ′ = {k ∈ K :
∑

i∈S q
k
i > 0},

Sk = S for k ∈ K ′ and Sk = ∅ for k ∈ K \K ′, which is the following capacity constraint :

x(δ+(S)) ≥

⌈
1

Q

∑
k∈K′

∑
i∈S

qki

⌉
. (21)

3.5. Clique Cluster Inequalities

The clique cluster inequalities of the 1-PDTSP (see [19]) can be adapted for the m-PDTSP.
Let us consider a customer v ∈ V and a collection of customer subsets W1, . . . ,Ws such that:

Wj1 ∩Wj2 = {v} for all 1 ≤ j1 < j2 ≤ s,∣∣∣∣∣∣
∑

k∈K′,i∈Wj

qki

∣∣∣∣∣∣ ≤ Q for all j ∈ {1, . . . , s} and for all K ′ ⊆ K,

∣∣∣∣∣∣
∑

k∈K′,i∈Wj1
∪Wj2

qki

∣∣∣∣∣∣ > Q for all 1 ≤ j1 < j2 ≤ s and some K ′ ⊆ K.

Because at most one subset Wi can satisfy x(δ+(Wi)) = 1 then a valid inequality for m-PDTSP is:

s∑
i=1

x(δ+(Wi)) ≥ 2s− 1, (22)

which is called clique cluster inequality.

3.6. Multistar Inequalities

Also the multistar inequalities of the 1-PDTSP (see [19]) are valid inequalities for the m-PDTSP
by simply aggregating the commodities of a subset K ′ into one commodity. We now summarize
two types of multistar inequalities.

Let K ′ ⊆ K, N ⊂ V , {S1, . . . , Ss} be a collection of disjoint subsets in V \ N such that∑
i∈S1,k∈K′ q

k
i , . . .,

∑
i∈Ss,k∈K′ q

k
i have all the same sign. Then, a generalized inhomogeneous mul-

tistar inequality is:

x(A(N)) ≤ |N |−

∣∣∣∣∣∣
∑

i∈N,k∈K′ q
k
i

Q
+

s∑
j=1

∑
i∈Sj ,k∈K′ q

k
i

Q

(
x(A(N : Sj)) + x(A(Sj : N)− |Sj |+ 1 + x(A(Sj))

)∣∣∣∣∣∣ .
(23)

Let us consider the subsets N ⊂ V , C ⊆ N and the collection of disjoint subsets {S1, . . . , Ss}
in V \N . The subset N is called nucleus, C connector and {S1, . . . , Ss} set of satellites. Then the
inequality

λx(A(N)) +
s∑
i=1

(
x(A(C : Si)) + x(A(Si : C)) + x(A(Si))

)
≤ µ+

s∑
i=1

(|Si| − 1). (24)

is valid for appropriate values of λ and µ. These constraints are called generalized homogeneous
multistar inequality when C = N and generalized homogeneous partial multistar inequality when
C 6= N .
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4. Separation Procedures

Given a solution x∗ of a linear relaxation of a model and a family of constraints F valid for the
integer solutions, a separation problem for F and x∗ is the problem of proving that all constraints
in F are satisfied by x∗, or finding a constraint in F violated by x∗. The scope of this section is
to develop procedures to solve the separation problems associated with the classes of constraints
introduced in the previous section. The separation problem of constraints (4) is known, and
described in Section 4.1. The separation problems of the other constraints are more difficult, hence
we describe mainly heuristic procedures. These procedures are applicable to the model (1)–(8),
the stronger model (1)–(6) and (9)–(10), and the alternative model (1)–(5) and (15).

4.1. Separating Subtour Elimination Constrains (4)

Let G∗ := (V ∗, A∗) be a network where V ∗ := V is the vertex set, A∗ = {a ∈ A : x∗a > 0} is the
arc set, and x∗a is the capacity of each a ∈ A∗. First, we check the inequalities xij + xji ≤ 1 for
violation. After, we check whether the graph G∗ is connected or not. If it is not connected then
each connected component induces a violated subtour elimination constraint (4). Otherwise, we
compute the cut with minimum capacity in G∗ to possibly detect a violated subtour elimination
constraint (4). Whenever a subset S defining a violated constraint (4) is found, we add the capacity
constraint (21) associated with S. This approach is an exact separation procedure for (4) and a
heuristic separation procedure for (21).

4.2. Separating Capacity Constraints (21)

A heuristic algorithm for capacity constraints (21) consists in building a list of candidates to be
a set S defining a violated constraint. Given a (fractional) solution x∗, the list is initialized with n
subsets of cardinality two, S = {i, j}, with the larger value x∗ij + x∗ji. Each set of cardinality s ≥ 3
is generated from a set S of cardinality s − 1 in the list by inserting a new customer l verifying
that x∗(A(S : {l})) + x∗(A({l} : S)) > 0 and S ∪ {l} is not already in the list. If there are several
customers j verifying these conditions then the one which maximizes x∗(A(S : {l}))+x∗(A({l} : S))
is chosen.

Another heuristic algorithm consists of selecting a subset K ′ of commodities and defining the 1-
PDTSP instance with customer demands

∑
k∈K′ q

k
i . Then we use the algorithm in [17] to possibly

find a set S defining a violated capacity constraint.

4.3. Separating Constraints (17)

We implement two heuristic procedures to separate the inequalities (17).

The first heuristic algorithm builds a Hamiltonian circuit
−→
T by inserting arcs with the largest

value x∗a. Ties are broken by considering the smallest value ca. The feasibility of this circuit is

checked in linear time by computing maxni=0

{∑
k∈K l

k
i (
−→
T )
}

and the minni=0

{
lki (
−→
T )
}

for each k.

When an inequality of type (19) is satisfied, then we have found an infeasible path. This infeasible
path induces a violated inequality (17). With the same approach we also check the feasibility of
the Hamiltonian circuit in the reverse direction.

This algorithm is a primal heuristic method because it provides an upper bound when the
circuit is feasible. It is also interesting to observe that, by enlarging a branch-and-cut approach
for the TSP with this separation algorithm, one has an exact approach for the m-PDTSP. Indeed,
this algorithm finds a violated constraint when an integer solution x∗ corresponds to a non-feasible
Hamiltonian circuit.

11



The second heuristic algorithm for separating inequalities (17) considers a different set of paths
−→
P . The aim is to generate an infeasible path

−→
P = (v1, . . . , vs) such that x∗v1v2+x∗v2v3+. . .+x∗vs−1vs >

s − 2. To this end we enumerate paths in the subgraph of G induced by the arcs with positive
value in x∗. Starting from each vertex v1 ∈ V , the path enumeration is done with a recursive

procedure. Values maxsi=0

{∑m
k=1 l

k
i (
−→
P )
}

and minsi=0

{
lki (
−→
P )
}

for each k are updated at each

iteration, together with the vertices v′ and v′′k where these maximum and minima are obtained. Note
that any infeasible path starting from v1 and containing v′ and v′′k also induces an infeasible path
starting from v′ or v′′k for some k. Therefore, the procedure backtracks when v1 6∈ {v′, v′′k : k ∈ K}
or (20) holds. Each time a path

−→
P is enlarged through the procedure, Inequality (19) is checked.

4.4. Separating Clique Cluster (22) and Multistar Inequalities (23) and (24)

We use the separation algorithms described in [19], which can be summarized as follows.
The algorithm to separate clique cluster inequalities (22) considers each customer v as the

intersection of the subsets Wj in a clique cluster. It searches for all paths starting from each
customer in {i1 ∈ V \ {v} : x∗vi1 + x∗i1v > 0} and the following customers i2, i3, . . . in the path are
such that x∗i1i2 + x∗i2i1 = 1, x∗i2i3 + x∗i3i2 = 1, . . .. For each K ′ ⊆ K, let us consider a 1-PDTSP

where qi =
∑

k∈K′ q
k
i (i.e., relax the problem to one commodity only). We now analyze the case

where we search for a clique cluster with
∑

i∈Wj1
∪Wj2

qi > Q. Let il be the first customer of each

path such that qi1 + . . . + qil is maximum. The set Wj = {v, i1, . . . , il} is a candidate set for a
clique cluster defining a violated inequality, and this is checked on x∗. In a similar way we also
search for a clique cluster with

∑
i∈Wj1

∪Wj2
qi < −Q.

The separation algorithm for the generalized homogeneous and generalized homogenous partial
multistar inequalities (24) is based on greedy heuristics to find possible candidates for the nucleus
N , connector C and satellites {S1, . . . , Ss}. For each N , C and {S1, . . . , Ss}, we compute bounds
to the projection over x(A(N)) and

∑
(x(A(C : Sj)) + x(A(Sj : C))). The upper frontier of the

convex hull of this projection induces valid inequalities of (24), which are checked for the violation
of x∗. Hence, given a fractional solution x∗, the candidates for nucleus sets are saved in a list and
are obtained using the first heuristic algorithm for capacity constraints (21). This list contains sets
N with 2 ≤ |N | ≤ n/2. When the nucleus N has been selected from the nucleus list, to detect
the satellite subsets Si for the generalized homogeneous multistar inequalities (24) with C = N ,
we use the same greedy heuristic used to detect the sets Wi in the clique cluster inequalities (22).
Again, for each K ′ ⊂ K and searching for satellites with positive demands and another searching
for satellites with negative demands. All the valid inequalities (24) with C = N obtained by
considering the projection from {N,S1, . . . , Ss} are checked for the violation of x∗. We also check
the inequalities (24) with C = N obtained by considering the projection from {N,S1, . . . , Ss}\{Sj}
where Sj is the satellite set with the smallest absolute value demand. This procedure is repeated
removing a satellite set at a time until there are two satellite sets (i.e., s = 2).

The separation procedure for generalized homogeneous partial multistar inequalities (24) with
C 6= N takes the same list of nucleus sets. For each nucleus N and each cardinality from 1 to the
maximum of 4 and |N | − 1, a connector C is built such that x∗(C : V \N) is as large as possible
and the process continues as when C = N .

Finally, the separation algorithm for the generalized inhomogeneous multistar inequalities (23)
uses the same list of nucleus sets described above and the same satellite constructor. As can be
observed from (23), the inequality is stronger if we consider all candidate satellites.

12



4.5. Separating Benders’ Inequalities (15)

Benders’ inequalities can be separated by solving a linear program. A solution x∗ of the
relaxation of model (1)–(8) defines a feasible m-PDTSP solution if, and only if, the linear system
(6), (9) and (10) is feasible, or equivalently the dual problem is bounded (with optimal objective
value equals to zero). If the linear system (called subproblem) is infeasible, an unbounded dual
ray defines a constraint to avoid the solution x∗ through a cutting-plane approach for solving the
m-PDTSP. More precisely, let αki be the dual variable associated with the equalities (6) and β(i,j)
be the dual variables associated with inequalities (10). Let ηk(i,j) and θk(i,j) be the dual variables

associated with the lower and upper bound on fk(i,j) in (9). Then the valid inequality defined by a

ray of the dual subproblem is like (15) but with the coefficient Qβ(i,j) replaced by(
Q+ min

{∑
k∈K

qki ,−
∑
k∈K

qkj , 0
})

β(i,j)+
∑
k∈K

((
Q+ min{qki ,−qkj , 0}

)
θk(i,j) −max{qki ,−qkj , 0}ηk(i,j)

)
.

Based on computational experiments, checking the feasibility of (6), (9) and (10) consumes
more computational time than checking the feasibility of (6)–(8), while the bound from the linear
programming relaxation did not change in our experiments. For that reason, we separate (15) with
the coefficient Qβ(i,j) on the x(i,j) variables. An advantage is that in many cases all β(i,j) values
are integer numbers, thus we add the rounded Benders’ inequality:

∑
a∈A

βaxa ≥

⌈
1

Q

∑
k∈K

∑
i∈V

αiq
k
i

⌉
.

5. Computational Results

To evaluate the performances of the proposed inequalities in practice, we have implemented
different approaches to solve the m-PDTSP to optimality. We used the branch-and-cut framework
of CPLEX 12.1, and the implementations were executed on a personal computer with an Intel Core
2 Duo processor at 3.33 Ghz with 3,25 Gb of RAM.

We have considered two classes of m-PDTSP instances, both based on the random Euclidean
generator proposed in Mosheiov [23] for the TSPPD. Briefly, in the first class of instances, each
customer offers a demand of only one commodity or requires a demand of only one commodity.
The second class of instances allows a customer to offer and/or require a demand for several
commodities. For both classes, the random generator produces n− 1 random pairs of coordinates
in the square [−500, 500] × [−500, 500], and the depot is located in (0, 0). The travel cost cij is
computed as the Euclidean distance between the points i and j. Also for both classes, the depot
does not demand any commodity (i.e. qk1 = 0 for all k ∈ K). In the first class, the demand qki is
randomly generated in [−10, 10] if i > m + 1 and k − 1 = i (mod) m, and qki = 0 otherwise. For
each k ∈ K, we set qki = 0 for 1 < i ≤ m+ 1 and i 6= k+ 1, while qkk+1 is defined so

∑
i∈V q

k
i = 0. If

qkk+1 6∈ [−10, 10] for some k then the random values qki are generated again. In the second class, the

demands qki are randomly generated in [−10/m, 10/m] for all 1 < i < n and all k ∈ K. For each
k ∈ K, the value qkn is defined to ensure

∑
i∈V q

k
i = 0. If qkn 6∈ [−10/m, 10/m] then the random

generator is applied to produce new qki values. In both classes −10 ≤
∑

k∈K q
k
i ≤ 10 for all i.

For that reason we have considered instances with Q ≥ 10. We generated a group of 10 random
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instances for each value m ∈ {2, 3}, each n ∈ {20, 25, 30} and each Q ∈ {25, 20, 17, 15, 12, 10}.
Therefore, our benchmark m-PDTSP collection contains 720 instances.

Our first set of experiments aims to compare different implementations based on the results in
this paper. For example, it is interesting to conclude whether in practice it is convenient or not
to work with the flow variables, or whether it is efficient or not to include a specific separation
procedure. Since there are many combinations of the material given in Sections 2–4, we have
selected four of them because they are the most representative. These configurations are the
following:

M1: A branch-and-cut code to solve Model (1)–(6) and (9)–(10). It applies all separation proce-
dures described in Section 4 except the separation of Benders’ inequalities (15).

M2: A branch-and-cut code solving the TSP model (1)–(5) with all the separation procedures
described in Section 4.

M3: Same as M2, but the separation procedures for clique cluster inequalities (22), generalized
homogeneous (partial) multistar inequalities (24), generalized inhomogeneous multistar in-
equality (23) and Benders’ inequalities (15) are applied only on branch-and-cut nodes with
a depth level smaller or equal to 10.

M4: Same as M2, but the separation procedures for clique cluster inequalities (22), generalized
homogeneous (partial) multistar inequalities (24), generalized inhomogeneous multistar in-
equality (23) and Benders’ inequalities (15) are not applied.

In all the combinations we have activated the separation procedure for inequalities (17), which also
contains a primal heuristic that may help the branch-and-cut algorithm.

Table 1 shows the computational time (in seconds) of the four approaches on a sample of 20
instances randomly selected among the 720 instances of our benchmark collection. The instance
name shows the number of commodities, the number of customers (including the depot), the vehicle
capacity, the seed used in our random generator, and the class number of the instance. We have
used a time limit of 3600 seconds for each execution. The main observation from this table is that
it is better to project out the continuous variables. In addition, it is also clear that the separation
procedures help but are also time consuming. For that reason the best setting was obtained when
the separation procedures were activated only in the top-level nodes of the branch-and-cut search,
i.e. implementation M3. For the rest of the section, M3 is the branch-and-cut approach that
we used to solve the m-PDTSP. In this implementation we sequentially applied the separation
procedures in a particular order, and only applied one procedure when the previous procedure did
not find any violated inequality. Clearly different orders lead to different results, and it was not
possible to find an order that outperformed the others on all instances. The only clear result was
to move the separation of the Benders’ inequalities to the end of the order because solving a linear
program was the most expensive separation procedure of our collection.

Our second set of experiments aims to show the implicit complexity of solving a m-PDTSP
instance. We have considered the example 1 given in Mosheiov [23], where the locations of the
depot and the customers are given. To produce instances of the m-PDTSP, we have considered
m = 3 and have generated m random numbers in [−4, 4] for each customer. The obtained data
are illustrated in Figure 3, so it can be used by other researchers to have our m-PDTSP instances.
We have set two families of instances. In a first family the initial load of the vehicle is unfixed, i.e.
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Table 1: Comparing different branch-and-cut implementations.

Instance M1 M2 M3 M4

m2n20Q10s444c2 487.3 68.3 34.8 63.0
m2n20Q10s888c2 410.6 49.2 52.9 45.2
m2n20Q15s555c2 21.8 5.2 5.5 2.1
m2n25Q10s444c2 3600.0 730.4 214.5 281.4
m2n25Q10s888c1 3600.0 973.4 327.1 321.3
m2n25Q15s666c2 315.4 44.6 22.4 18.1
m2n25Q20s666c2 121.7 121.1 19.7 29.6
m3n20Q10s111c1 994.6 75.6 15.9 61.7
m3n20Q10s555c1 1944.0 405.5 110.0 110.0
m3n20Q10s888c2 3600.0 499.3 453.3 384.1
m3n20Q15s888c2 300.5 51.4 25.3 16.5
m3n25Q10s000c1 3600.0 756.7 246.8 281.3
m3n25Q10s111c1 3600.0 817.5 198.6 193.2
m3n25Q10s666c1 3600.0 1881.2 649.3 1960.9
m3n25Q10s999c1 3600.0 835.3 273.5 389.8
m3n25Q15s222c2 3600.0 660.7 201.8 243.2
m3n25Q15s333c2 1927.6 259.7 114.3 107.4
m3n25Q15s555c1 3600.0 481.0 435.3 107.2
m3n25Q15s555c2 1090.2 167.0 39.5 48.9
m3n25Q20s555c2 870.5 648.7 150.3 119.5

Average 2044.2 476.6 179.5 239.2
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they are direct m-PDTSP instances. In a second family, the initial load of the vehicle is forced to
be zero, i.e. we solve the restricted version of the m-PDTSP where the vehicle leaves from (and
returns to) the depot with zero load. To this end, we have used the transformation described in
Section 1.

Each family of instances differs only in the vehicle capacity Q. In the first family, for a large
Q we obtain the TSP solution, and this occurs when Q ≥ 19. In the second family, for a large
Q we obtain the TSPPC solution, which occurs when Q ≥ 21. Since customer 18 requires a total
demand of 7 units, there is no solution when Q < 7. For that reason we have enumerated and
solved all the possible values of Q for each family of instances, leading to 28 instances.

Table 2 shows the performance of our approach (M3) on these 28 instances. The heading of
each column of Table 2 means:

Q: the capacity of the vehicle;

Cuts: the numbers of inequalities generated by the separation procedures; sec refers to subtour
elimination constraints (4), cap. refers to capacity constraints (21), paths refers to inequali-
ties (17), cliq. refers to clique cluster inequalities (22), hm refers to generalized homogeneous
multistar inequalities (24) with C = N , hpm refers to generalized homogeneous partial mul-
tistar inequalities (24) with C 6= N , and im refers to generalized inhomogeneous multistar
inequalities (23), sublp refers to Benders’ inequalities (15);

r-lb/ub: the percentage of the lower bound over the best upper bound at the end of the root node;

ub: the best upper bound found during the branch-and-cut algorithm;

B&C: the number of explored branch-and-cut nodes;

time: the total computational time in seconds;

gap: the gap between the best lower bound and the best upper bound when the algorithm stops.

This table shows that the instances are slightly more difficult to solve when the initial load of the
vehicle is fixed a-priory. Observe that we solve this restricted variant of the m-PDTSP by adding
a dummy commodity and by replacing the depot with two dummy customers: a pickup customer
giving Q units of the dummy commodity and a delivery customer requiring Q units of the dummy
commodity. This is the reason why this variant becomes more difficult than the m-PDTSP with
no requirement on the initial load. Indeed, after the modification, we obtain a non-restricted m-
PDTSP where the vehicle capacity is equal to the demand of a customer, which is the smallest
value of a vehicle capacity to allow a feasible route. In addition, if the number of commodities in
the original problem was m = 3 then, after the modification, we have a problem with m + 1 = 4
commodities, which also contributes to the complexity of the problem.

Another feature with a direct impact on the complexity of the problem is the vehicle capacity.
When Q is smaller then the problem is more difficult, except when Q is close to being the smallest
value that allows a feasible m-PDTSP solution. In this situation the inequality (11) holds for
many pairs (i, j) of customers, and therefore many variables xij can be removed. For this set of
experiments the time limit was set to 10000 seconds, and the two instances with Q = 9 remain
unsolved. Analyzing the columns with the number of cuts, the most successful separation procedure
was the separation of inequalities (17), based on finding infeasible paths. On the other hand, the
separation of the generalized inhomogeneous multistar inequalities (23) generated a tiny number
of inequalities, and by deactivating this separation the total time for solving these instances can
be slightly reduced. An interesting observation is that the separation of Benders’ inequalities is an
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Table 2: computational results for example 1 of Mosheiov [23].

Cuts
Q sec cap. paths cliq. hm hpm im sublp r-lb/ub ub B&C time gap

19 14 0 2 0 0 0 0 0 100.0% 4431 1 0.3 0.0%
18 28 2 38 0 0 0 0 0 98.6% 4493 19 0.9 0.0%
17 48 2 73 0 0 0 0 0 97.0% 4572 59 1.1 0.0%
16 39 25 62 0 24 0 0 0 96.7% 4614 54 1.2 0.0%
15 78 70 305 0 24 0 0 0 95.8% 4744 874 7.4 0.0%
14 63 100 158 0 16 0 0 0 96.1% 4744 447 3.4 0.0%
13 114 183 471 0 9 0 0 0 92.5% 4926 1076 10.6 0.0%
12 173 467 1411 4 25 4 0 3 93.9% 5047 3635 36.8 0.0%
11 395 1542 5559 19 41 42 0 0 89.1% 5458 31258 936.3 0.0%
10 245 1177 3612 11 96 32 2 0 89.1% 5692 35672 598.8 0.0%
9 412 3431 5903 35 115 104 1 0 88.1% 6028 190479 10000.0 2.0%
8 268 2576 5641 29 242 180 4 4 87.1% 6350 105181 4811.3 0.0%
7 240 4098 4508 49 374 175 9 8 86.2% 6843 57949 2906.8 0.0%

21 36 336 73 0 7 35 0 0 96.0% 4915 170 5.8 0.0%
20 40 436 118 1 5 43 0 0 92.4% 5119 498 7.7 0.0%
19 49 398 120 0 5 22 0 0 92.8% 5119 726 12.5 0.0%
18 36 424 114 1 14 32 0 0 92.9% 5119 535 9.6 0.0%
17 42 603 196 3 11 26 0 0 93.4% 5119 607 12.0 0.0%
16 57 695 200 1 57 22 0 1 93.0% 5119 686 11.6 0.0%
15 79 752 230 2 86 28 0 0 92.4% 5173 929 13.9 0.0%
14 75 1240 477 2 128 43 0 0 90.3% 5295 1989 31.3 0.0%
13 64 658 470 8 116 20 0 0 89.6% 5376 2586 37.7 0.0%
12 149 1976 1793 12 235 44 0 5 87.2% 5639 13172 242.7 0.0%
11 225 3387 3974 28 222 85 0 1 86.9% 5852 37159 1533.7 0.0%
10 142 3037 4797 27 291 107 3 2 86.5% 6113 126689 4914.8 0.0%
9 205 6065 6505 42 392 198 5 5 84.8% 6431 130679 10000.0 2.3%
8 139 3795 3958 66 695 260 22 9 85.2% 6600 131355 6449.7 0.0%
7 245 5859 3775 87 664 167 10 7 87.6% 6911 30038 1590.9 0.0%

exact procedure to find violated inequalities (15). Since the numbers in column sublp are small, we
deduce that the other separation procedures have found the necessary inequalities to ensure the
m-PDTSP feasibility of TSP solutions.

Figure 4 shows the optimal solution found by our M3 implementation on the m-PDTSP instance
with Q = 7 and unfixed initial load. The non-planar drawing of the optimal solution, although
the travel distances are Euclidean, makes the complexity of the problem clear. Figure 5 shows the
optimal solution of the TSPPC, which is the m-PDTSP with Q ≥ 21 and the initial load of the
vehicle fixed to zero. The optimal solution of this restricted problem when Q = 7 is in Figure 6,
which is also a route far from being a planar drawing.

The third set of experiments aims to show details and limitations of our M3 implementation.
To this end we have solved the 720 m-PDTSP instances in the benchmark collection described at
the beginning of this section. Table 3 summarizes the result on the first class of instances (i.e.,
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Figure 3: Data of a TSPPD instance in Mosheiov [23].
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Figure 4: Optimal route of a 3-PDTSP on Mosheiov’s data with Q = 7 and unfixed initial load.
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Figure 5: Optimal route of a 3-PDTSP on Mosheiov’s data with Q = 21 and initial load fixed to zero.
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Figure 6: Optimal route of a 3-PDTSP on Mosheiov’s data with Q = 7 and initial load fixed to zero.
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instances where each customer picks up one commodity and/or delivers one commodity) and Table
4 on the second class (i.e. instances where each customer may provide or require demands of several
commodities). The results are grouped according to the values (n,m,Q), and the average results
are given in each cell of each table. The meanings of the column headings are the ones described for
Table 2, except that now each value is the average over the number of feasible m-PDTSP instances
in each group. This number is 10 for all the groups, except for two groups in Table 4: the group
with (n,m,Q) = (20, 2, 10) which was 9, and the group with (n,m,Q) = (25, 3, 10) which was
8. Tables 3 and 4 do not show the column ub because we think that average objective values of
optimal solutions are of no use. Instead, they show a new column ub/tsp that gives the average
percentage of the best m-PDTSP upper bound with respect to the TSP optimal objective value.
There is also a new column t.l. which shows the number of m-PDTSP instances that were not
solved within our time limit of 3600 seconds. We do not show the column B&C in these tables for
lack of space.

From Tables 3 and 4, again, the difficulty of solving an instance is highly dependent on Q. The
problem is more complex when Q is close to the largest total demand of a customer, which is value
10 in our instances. Comparing 3 and 4 it is also obvious that the problem is harder to solve when
the pickup (or delivery) demand of a customer concerns more than one commodity. In this case the
best m-PDTSP objective value was 189.4% over the optimal TSP objective value, which means that
the length of the best m-PDTSP route is almost double the length of an optimal TSP route. When
analyzing the number of inequalities, for both families and all groups, the separation procedure of
inequalities (17) was the one generating more violated cuts. Our experiments confirm that, even if
this separation is heuristically solved, it is responsible for the small number of generated Benders’
inequalities. In addition it is worth noting that the separation procedure of inequalities (17) also
provides the branch-and-cut code with a primal heuristic that helps to find good upper bounds.
Activating the separation procedures of the clique cluster and multistar inequalities become useful
on difficult m-PDTSP instances. For example, without these separation procedures our code does
not solve within the time limit any instances with (n,m,Q) = (30, 3, 10) and a fixed initial load.
This is also coherent with our conclusion from comparing M3 and M4 in Table 1.

6. Conclusions

This paper proposes an exact approach to solve the multi-commodity Pickup-and-Delivery
Traveling Salesman Problem. This problem is a very interesting and complex routing problem as
it generalizes or is related to many other variants that have been addressed in the vehicle routing
literature during recent years. It concerns the problem of finding a minimum-cost Hamiltonian
route for a capacitated vehicle that must collect and deliver several products, each one with possibly
several origins and several destinations. Although by default the initial load of the vehicle is
unfixed, the restricted variant where the vehicle is required to leave the depot with zero load can
be addressed.

An Integer Linear Programming model based on two-index variables has been described, to-
gether with a set of valid inequalities to strengthen the linear programming relaxations. New and
useful inequalities have been proposed to remove infeasible paths in a solution. Separation proce-
dures have been described and implemented in a branch-and-cut approach. The performances of
the implemented code have been analyzed on a benchmark collection of 720 randomly generated
instances with different features. The implementation was able to solve instances with up to 30
customers, 3 commodities and very small vehicle capacities.

20



Table 3: Computational results on the first class of m-PDTSP instances.

Cuts
n m Q sec cap. paths cliq. hm hpm im sublp r-lb/ub ub/tsp time t.l. gap

20 2 10 42.2 129.7 194.7 4 22.8 10.8 0.2 0.2 96.3% 125.1% 3.6 0 0.00%
12 42.1 89.3 153.5 3.7 18.8 7.2 0.8 0.1 95.8% 118.3% 2.3 0 0.00%
15 26.4 17.7 30.7 0.1 3.4 0.7 0 0 98.2% 108.6% 0.3 0 0.00%
17 22.9 9.1 19.5 0 0 0 0.1 0 98.9% 105.4% 0.2 0 0.00%
20 17.9 2.9 3.2 0 0 0 0 0 89.5% 102.7% 0.0 0 0.00%
25 16.8 1.1 1.2 0 0 0 0 0 99.7% 100.9% 0.0 0 0.00%

20 3 10 98.4 230.5 917 5.5 21.2 6.2 0.1 0.4 91.5% 124.5% 20.6 0 0.00%
12 72.2 75 373 0.8 10.8 2.1 0 0.1 94.2% 112.8% 4.3 0 0.00%
15 29.5 9.2 42.7 0 0.3 0.1 0 0 87.2% 105.8% 0.6 0 0.00%
17 22.6 1.8 17 0 0 0 0 0 98.5% 102.8% 0.2 0 0.00%
20 16.2 0.1 1.5 0 0 0 0 0 89.8% 100.6% 0.0 0 0.00%
25 15.6 0 0 0 0 0 0 0 99.9% 100.0% 0.0 0 0.00%

25 2 10 87.5 424.8 743.8 15.6 106.8 37.5 1.1 1.4 93.3% 128.1% 70.4 0 0.00%
12 70.1 140.8 304.7 6.6 24.8 11 0.2 0.1 95.5% 116.4% 6.8 0 0.00%
15 34.3 27.5 46.9 0.8 3 0.3 0 0 98.9% 106.3% 0.5 0 0.00%
17 27.2 15 17.6 0.1 0.5 0 0 0 99.0% 103.5% 0.4 0 0.00%
20 23.3 4.8 5.6 0 0.1 0 0 0 99.2% 101.8% 0.1 0 0.00%
25 20.7 0.2 0.1 0 0 0 0 0 99.6% 100.0% 0.1 0 0.00%

25 3 10 274.5 1263.8 3725.7 23.6 128.1 60.2 2.9 2.5 89.8% 133.5% 890.6 2 0.68%
12 151.8 443.7 1720.3 7.7 66 32.1 0.9 1.3 92.1% 121.1% 231.4 0 0.00%
15 76 98.2 414 0.3 13.6 2.1 0 0.1 95.4% 111.3% 25.1 0 0.00%
17 45.5 22 130.3 0 4.1 0.1 0 0.1 87.2% 106.2% 3.4 0 0.00%
20 29 4.4 27.1 0 0.7 0 0 0 98.7% 102.5% 0.5 0 0.00%
25 20.8 0 4.1 0 0 0 0 0 99.5% 100.2% 0.1 0 0.00%

30 2 10 180.6 1357.7 2413.5 30.9 290.6 83.8 5.7 2.7 91.8% 136.9% 852.3 1 0.53%
12 153.5 661.1 1331.3 11.4 122.8 46 1.1 1.2 93.4% 125.3% 244.3 0 0.00%
15 108.9 236.3 423.4 2.5 38.4 10.9 0.6 0 95.2% 115.1% 18.4 0 0.00%
17 80.7 100.5 236.1 0.4 20.7 2.1 0 0.1 96.0% 110.8% 11.0 0 0.00%
20 46.4 32.6 54.6 0.1 2.4 0.3 0 0 98.0% 105.2% 2.4 0 0.00%
25 30.9 9.3 9.9 0 1.8 0 0 0 98.8% 101.8% 0.6 0 0.00%

30 3 10 611.8 4283.5 8775.9 14.8 130.9 45.2 2.1 6.4 82.8% 148.6% 2262.3 5 8.95%
12 273.7 973 3477.2 2.6 58.1 30.8 0.6 0.7 91.4% 123.1% 1013.9 1 1.20%
15 140.5 265.4 1061.1 1 31.3 11.7 0.3 0.1 94.8% 111.9% 272.8 0 0.00%
17 85.8 63.7 308 0.1 7.7 3.3 0 0.1 96.1% 108.1% 18.8 0 0.00%
20 53.4 20.1 107 0.1 4.1 0.5 0 0 87.8% 103.7% 3.6 0 0.00%
25 29.2 2.4 12.7 0 2.9 0 0 0 89.0% 101.1% 0.7 0 0.00%
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Table 4: Computational results on the second class of m-PDTSP instances.

n m Q sec cap. paths cliq. hm hpm im sublp r-lb/ub ub/tsp time t.l. gap

20 2 10 50.5 573.2 384.2 42 281.1 78.9 4.2 4.4 91.9% 151.7% 18.0 0 0.00%
12 44.2 215 195.3 15.2 66.5 24.2 0.9 0.8 95.2% 132.8% 3.4 0 0.00%
15 37.2 82.2 103 2.7 9.8 4 0 0.1 96.4% 120.5% 1.1 0 0.00%
17 32.9 40.2 76.3 0.8 1.5 1.6 0 0.1 96.8% 115.0% 0.7 0 0.00%
20 26.1 16.2 34.5 0 3.7 0 0 0 97.7% 110.0% 0.3 0 0.00%
25 19.2 1.7 8.2 0 0 0 0 0 99.3% 103.0% 0.1 0 0.00%

20 3 10 45.9 1076.9 493.9 41.9 251.5 79.6 1.8 5.5 93.1% 153.7% 85.4 0 0.00%
12 54 449.2 413.7 24.6 117.1 45.2 1.3 4.1 93.1% 140.7% 25.1 0 0.00%
15 54.6 243.7 278.9 9.5 30.5 19.5 0 0.8 95.1% 126.2% 5.3 0 0.00%
17 44.8 104.1 169.3 2.4 11.8 5.3 0 0.5 96.5% 118.3% 1.8 0 0.00%
20 33.7 47.6 77 1.2 3.8 0.6 0 0 96.9% 111.1% 1.0 0 0.00%
25 31.9 11.8 40.5 0 0.8 0.2 0 0 98.0% 105.2% 0.5 0 0.00%

25 2 10 99.1 2003.8 973.3 51.2 462.3 70.1 15 8.2 93.4% 158.9% 759.2 2 0.77%
12 109.2 1007.4 681.3 29.6 196.9 48.9 1.7 3.2 95.4% 144.1% 382.1 1 0.04%
15 52.9 250.5 194.8 6.9 62.4 11 0.6 0.6 96.2% 127.9% 6.3 0 0.00%
17 62.7 192.6 232.2 6.7 30.4 12.5 0.2 0.4 96.3% 121.7% 8.3 0 0.00%
20 53.8 134.8 239.3 1.3 14.4 2.8 0.2 0.1 96.7% 114.1% 9.0 0 0.00%
25 35.1 34.2 64.8 0 2.7 3 0.1 0 97.8% 106.7% 1.5 0 0.00%

25 3 10 147.3 4968.0 2475.0 81.4 676.1 148.5 11.5 20.6 89.0% 162.3% 1819.3 4 1.42%
12 146.9 2990.2 2339 64.4 358.8 141.9 1.4 10.7 89.8% 146.6% 947.3 2 0.95%
15 138.2 1166.3 1390.4 25.7 137.8 59.5 0.5 4.3 93.0% 131.0% 222.8 0 0.00%
17 107.6 555.6 771.4 8.8 52.7 17 0.1 1.9 93.6% 123.9% 47.5 0 0.00%
20 107.8 329.8 646.5 2.9 34.1 15.8 0.1 1.3 94.0% 114.3% 39.2 0 0.00%
25 39.2 22.1 64.8 0 4.6 0 0 0.2 98.0% 105.3% 1.2 0 0.00%

30 2 10 150.1 6004.1 1752.3 94.3 1055.7 170.8 45.4 13.9 89.5% 167.6% 1436.3 3 3.92%
12 166 2785 1563.3 73.2 577.8 144.9 7.9 9.3 92.0% 146.2% 1297.8 3 0.62%
15 124.7 1468 1333.2 42.4 266.5 87.7 4.8 4.9 93.5% 130.4% 794.8 1 0.38%
17 131.5 1082.7 1041.7 26 230 67.6 1.3 1.8 94.2% 123.5% 409.1 0 0.00%
20 100.8 602.4 715.2 7 104.3 32.4 0.5 0.3 95.7% 114.8% 314.6 0 0.00%
25 54.7 135.8 176.3 1.3 21.3 13.4 0 0 97.2% 107.2% 23.8 0 0.00%

30 3 10 213.8 11659.9 3510.5 142.5 1329.1 282.8 11.8 48 81.9% 189.4% 3578.2 8 9.83%
12 183.5 6024.8 3408.3 91.1 634.9 183.6 2.9 22.4 88.9% 155.6% 2739.8 6 2.71%
15 243 3827.4 3430.7 42.7 289 108 1.2 12.4 91.6% 136.1% 1625.5 2 0.92%
17 210.3 2702.5 2935.3 21.7 164.3 58.7 1.1 6.3 91.4% 128.8% 1222.5 3 1.70%
20 203.3 1145.4 1945.5 6.2 74.4 24 0.2 3.6 92.3% 119.6% 560.8 1 0.11%
25 114.2 188.9 578.9 0.4 28.3 2.7 0 1.8 94.6% 110.9% 63.7 0 0.00%

22



References

[1] S. Anily, J. Bramel, Approximation algorithms for the capacitated traveling salesman problem with pickups and
deliveries, Naval Research Logistics 46 (1999) 654–670.

[2] S. Anily, G. Mosheiov, The traveling salesman problem with delivery and backhauls, Operations Research
Letters 16 (1994) 11–18.

[3] E. Balas, M. Fischetti, W. R. Pulleyblank, The precedence-constrained asymmetric traveling salesman polytope,
Mathematical Programming 68 (1995) 241–265.
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[12] G. Erdoǧan, J. F. Cordeau, G. Laporte, A branch-and-cut algorithm for solving the non-preemptive capacitated
swapping problem, Discrete Applied Mathematics 158 (15) (2010) 1599–1614.

[13] M. Gendreau, G. Laporte, D. Vigo, Heuristics for the traveling salesman problem with pickup and delivery,
Computers & Operations Research 26 (1999) 699–714.

[14] L. Gouveia, P. Pesneau, On extended formulations for the precedence constrained asymmetric traveling salesman
problem, Networks 48 (2006) 77–89.

[15] N. Mladenović, D. Urošević, S. Hanafi, A. Ilić, A general variable neighborhood search for the one-commodity
pickup-and-delivery travelling saleman problem, European Journal of Operational Research 220 (2012) 270–285.
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