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Description of the 1-PDTSP

I Let us consider a depot, denoted by 1, and a set of customers
{2, . . . , n}.

I Each customer i ∈ {2, . . . , n} has associated a given quantity
qi of product:

I If qi < 0, then i is called delivery customer.
I If qi > 0, then i is called pickup customer.

I There is a vehicle with upper-limited capacity Q, originally
stationed in the depot.

I There is only ONE product (e.g., money)
NOT two commodities (full and empty bottles!).

I The travel cost cij is also given.

I No condition on the initial load of the vehicle at the depot.
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Description of the 1-PDTSP An extension of the problem

But the additional constraint of starting with a fix load from the
depot can be imposed by splitting the depot into two dummy
customers 1′ and 1′′ where:

I q1′ = +Q and q1′′ = q1 − Q if q1 ≥ 0;

I q1′ = +Q + q1 and q1′′ = −Q if q1 < 0.

The arc from the pickup dummy vertex to the delivery dummy
vertex must be also routed by the vehicle.
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Related Problems CTSPPD

The special version of the 1-PDTSP where the delivery and pickup
quantities are all equal to one has been studied:

I Chalasani & Motwani (1999) call this problem Q-delivery
TSP and propose heuristic algorithms.

I Anily & Bramel (1999) call this problem Capacitated TSP
with Pickups and Deliveries (CTSPPD) and also propose
heuristic algorithms.

If the Hamiltonian requirement on the route is relaxed, a 1-PDTSP
instance can be solved as a CTSPPD instance splitting each
customer i in qi dummy customers.
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Related Problems TSP with Pickups and Deliveries

The TSP with Pickups and Deliveries (TSPPD).

I Also called TSP with Pickups and Backhauls (TSPPB) and
TSP with Delivery and Collection constraints (TSPDC).

I There are two types of products (i.e., two commodities).
I The total amount of product collected from pickup customers

must be delivered only at the depot (i.e., many-to-one).
I The product collected from the depot must be delivered to the

delivery customers (i.e., one-to-many).

I Bibliography:
I Mosheiov (1994) introduces the TSPPD and proposes

applications and heuristic approaches.
I Anily & Mosheiov (1994), and Gendreau, Laporte &

Vigo (1999) present approximation algorithms.
I Baldacci, Hadjiconstantinou & Mingozzi (2003)

present an exact algorithm.

I Example (empty bottles and full bottles).
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Related Problems TSP with Pickups and Deliveries

Each instance of the TSPPD can be transformed in an 1-PDTSP
instance:

I splitting the depot in two different customers 1′ and 1′′,

I fixing the arc variable between these customers.
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Related Problems Summary of Related Problems

This table summarizes some single-vehicle problems with
pickup and delivery products:

Problem name # Origins-destinations Hamilt. Preemption Q Load
Swapping Problem m many-to-many no yes 1 yes

Stacker Crane Problem m one-to-one no no 1 yes
CDARP m one-to-one no no k yes
PDTSP m one-to-one yes no ∞ yes

TSPPD, TSPDB, TSPDC 2 one-to-many yes no k yes
TSPB 2 one-to-many yes no ∞ yes

CTSPPD, Q-delivery TSP 1 many-to-many no no k yes
1-PDTSP 1 many-to-many yes no k no

This talk concerns an algorithm for the 1-PDTSP, which contains the TSPPD.
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Mathematical Model Symmetric Model

I V := {1, ..., n} is the set of vertices and E is the set of the
edges (undirected model).

I The edge e ∈ E between i and j is denoted by [i , j ].

I For each S ,T ⊂ V we denote:
I δ(S) := {[i , j ] ∈ E : i ∈ S , j ∈ V \ S},
I E (S) := {[i , j ] ∈ E : i , j ∈ S},
I E (S : T ) := {[i , j ] ∈ E : i ∈ S , j ∈ T}.

I We assume q1 = −
∑n

i=2 qi .

I cij is the cost of going from i to j .

I xe :=

{
1 iff e is routed,

0 otherwise.

I For each E ′ ⊂ E we denote x(E ′) :=
∑

e∈E ′ xe
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Mathematical Model Symmetric Model

A 0-1 ILP model for (symmetric) 1-PDTSP is:

min
∑
e∈E

cexe

subject to

x(δ({i})) = 2 for all i ∈ V

x(δ(S)) ≥ 2 for all S ⊂ V

x(δ(S)) ≥ 2

Q

∣∣∣∣∣∑
i∈S

qi

∣∣∣∣∣ for all S ⊂ V

xe ∈ {0, 1} for all e ∈ E .

This model is obtained by Benders’ decomposition over the
continuous variables (flow) of a mixed model.
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Computational Complexity

I Clearly, the 1-PDTSP is an NP-hard optimization problem in
the strong sense since it coincides with TSP when the vehicle
capacity is large enough.

I Even more, checking if there is a feasible solution of a
1-PDTSP instance is NP-complete in the strong sense. The
idea is because 3-Partition Problem is a particular case of the
1-PDTSP.
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Valid Inequalities Inequalities Derived from the TSP

Inequalities derived from the TSP are:

I 2-matching inequalities.

I Comb inequalities (see Letchford & Lodi (2002) for some
recent separation procedures).

I Etc., (see Naddef (2001) for other valid inequalities).
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Valid Inequalities Benders’ Cuts

The inequalities derived from the Benders’ decomposition can be
strengthened, i.e.:

x(δ(S)) ≥ 2r(S) for all S ⊂ V ,

where

r(S) := max

{
1,

⌈∣∣∣∣∣∑
i∈S

qi

∣∣∣∣∣ /Q

⌉}
is a lower bound of the number of times that the vehicle has to go
inside/outside the customer set S .

I They are similar inequalities to the known capacity constraints
for the CVRP.

I The rounded Benders’ cuts can be rewritten as:
x(E (S)) ≤ |S | − r(S) for all S ⊂ V .
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Valid Inequalities Clique Clusters

Let W1, . . . ,Wm be subsets of V such that:

Wi ∩Wj = {v} for all 1 ≤ i < j ≤ m,

r(Wi ) = 1 for all i ∈ {1, . . . ,m},
r(Wi ∪Wj) > 1 for all 1 ≤ i < j ≤ m,

a clique cluster inequality is:

m∑
i=1

x(E (Wi )) ≤
m∑

i=1

|Wi | − 2m + 1.

This family of inequalities was first proposed by Augerat (1995)
and Pochet (1998) for the CVRP.
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Recent articles deal with the multistar inequalities for the CVRP
with general demands (see, e.g., Blasum & Hochtättler
(2000), Fisher (1995), Gouveia (1995) and Letchford,
Eglese & Lysgaar (2003)).

They can be easily adapted for the 1-PDTSP:

x(E (N)) ≤ |N| − 1

Q

∣∣∣∣∣∣
∑
i∈N

qi +
∑
j∈S

qjx[i ,j]

∣∣∣∣∣∣
for N ⊂ V and S ⊂ V \ N.

I We call these inequalities inhomogeneous multistar
inequalities (also, general large multistar inequalities).

I Blasum & Hochtättler (2000) propose a polynomial
separation procedure and give a generalization when each
vertex in S is replaced by a subset of vertices for the CVRP.

I We call the generalized inequalities generalized
inhomogeneous multistar inequalities.
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Valid Inequalities Multistars

Another kind of multistar inequalities is proposed by Letchford,
Eglese & Lysgaar (2003) for the CVRP.

Let us consider the
following subsets:

N ⊂ V Nucleus

C ⊂ N Collector

S ⊂ V \ N Satellite set

then
λx(E (N)) + x(E (C : S)) ≤ µ

is valid for appropriate values of λ and µ.
When C = N they are called homogeneous multistar inequalities;
otherwise they are called homogeneous partial multistar
inequalities.
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Valid Inequalities Multistars

λx(E (N)) + x(E (C : S)) ≤ µ

I For a fixed N, C and S , Letchford, Eglese & Lysgaar
(2003) give a procedure to find appropriate value of λ and µ.
This procedure is adapted for the 1-PDTSP.

I The homogeneous multistar (partial) inequalities can also be
generalized when the vertices in S are replaced by a collection
of subsets {S1, . . . ,Sm}.

λx(E (N))+
m∑

i=1

(
x(E (C : Si ))+x(E (Si ))

)
≤ µ+

m∑
i=1

(|Si |−1).
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Branch-and-Cut for 1-PDTSP

The algorithm starts by solving

min
∑
e∈E

cexe

subject to

x(δ({i})) = 2 for all i ∈ V

0 ≤ xe ≤ 1 for all e ∈ E

After, other valid inequalities violated by the fractional solution are
inserted dynamically.
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Branch-and-Cut for 1-PDTSP

Separation procedures for:

I Rounded Benders’ cuts (Bend.).

I Comb and other TSP inequalities are not implemented.

I Clique clusters inequalities (cliq.).

I Generalized homogeneous multistar inequalities (ghm).

I Generalized homogeneous partial multistar inequalities
(ghpm).

I Generalized inhomogeneous multistar inequalities (gim).

x(E (S)) ≤ |S | − r(S)
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x(δ(H)) +
m∑

i=1

x(δ(Ti )) ≥ 3m + 1, . . .
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Separation procedures for:

I Rounded Benders’ cuts (Bend.).

I Comb and other TSP inequalities are not implemented.

I Clique clusters inequalities (cliq.).

I Generalized homogeneous multistar inequalities (ghm).

I Generalized homogeneous partial multistar inequalities
(ghpm).

I Generalized inhomogeneous multistar inequalities (gim).

x(δ(N)) ≥ 2

Q

∣∣∣∣∣∣
∑
i∈N

qi +
m∑

j=1

( ∑
i∈Sj

qi

)(
x(E (N : Sj)) + 2− x(δ(Sj))

)∣∣∣∣∣∣
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Computational results

I The algorithm has been implemented in ANSI C, and ran on a
personal computer AMD Athlon XP 2600+ (2.08 Ghz.).

I The software CPLEX 7.0 has been used as LP-solver in the
Branch-and-Cut algorithm.

I The time limit was 7200 seconds.

I We tested the performance of the 1-PDTSP approach by
using the generator of random Euclidean instances proposed
by Mosheiov (1994) for the TSPPD.

I The customers are in the rectangle [−500, 500]× [−500, 500].
I The demands qi are integer numbers in [−10, 10].
I The travel costs cij are the Euclidean distances.

I We also tested the algorithm over the TSPPD instances used
in Gendreau, Laporte & Vigo (1999) and Baldacci,
Hadjiconstantinou & Mingozzi (2003).
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Cuts
n Q Bend. cliq. ghm ghpm gim LB/z∗ z∗/TSP B&C Time t.l.

60 TSPPD 63.4 0.0 10.5 0.6 0.0 98.51 101.33 102.9 1.06 0
60 10 705.6 147.1 590.0 65.2 22.1 96.60 144.86 2650.7 210.45 0
60 15 407.5 34.9 299.8 24.4 2.6 97.81 119.82 739.2 50.71 0
60 20 223.4 6.9 135.9 14.2 2.0 98.38 109.88 109.4 5.94 0
60 25 156.4 1.4 87.6 5.4 0.4 98.47 105.60 84.1 2.38 0
60 30 118.4 0.7 42.1 2.3 0.2 98.73 103.00 140.9 2.35 0
60 100 35.4 0.0 0.0 0.0 0.0 98.65 100.00 42.5 0.46 0

80 TSPPD 90.8 0.1 49.1 0.4 0.0 98.81 101.06 72.3 2.28 0
80 10 1030.4 166.0 804.6 67.6 68.2 97.12 153.72 4615.0 704.26 5
80 15 1418.3 125.3 605.9 51.1 12.7 96.88 126.83 6151.7 989.76 3
80 20 1590.0 112.5 356.1 32.8 6.6 96.85 117.52 18357.1 2079.17 2
80 25 800.8 14.7 309.9 33.6 3.0 97.41 109.68 2646.4 193.74 1
80 30 465.5 4.8 139.2 16.0 0.5 98.16 106.34 1491.2 82.64 0
80 100 44.6 0.0 0.0 0.0 0.0 99.17 100.00 146.2 1.27 0

100 TSPPD 148.3 0.1 29.2 0.5 0.0 98.72 101.01 261.3 6.69 0
100 20 1684.3 73.0 435.3 27.7 1.0 97.22 110.79 18674.0 2733.24 7
100 25 1841.1 23.8 365.0 29.3 1.3 97.34 109.83 9404.0 1758.84 2
100 30 1404.0 7.7 248.4 21.5 0.9 97.74 106.84 11728.7 1401.44 0
100 100 54.3 0.0 0.0 0.0 0.0 99.22 100.00 42.6 1.45 0

Table: Average results of the random Euclidean instances



Computational results

β LB/Opt. Opt/TSP B&C Time

0.00 99.67 100.00 1172.0 64.99
0.05 99.61 100.54 2888.5 187.37
0.10 99.54 100.66 816.1 48.10
0.20 99.49 100.85 1505.0 95.98

Table: Results of the TSPPD instances derived from VRP test problems
described in Gendreau, Laporte & Vigo (1999)
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Computational results

β n LB/Opt. Opt./TSP B&C Time

0.05 50 99.36 100.17 4.8 0.09
0.05 100 99.15 100.26 219.3 3.52
0.05 150 99.15 100.13 703.7 23.44
0.05 200 99.15 100.34 2650.9 113.84

0.10 50 99.49 100.44 3.7 0.11
0.10 100 98.96 100.48 209.0 4.86
0.10 150 99.08 100.33 5279.4 158.98
0.10 200 99.11 100.43 1255.0 77.85

0.20 50 99.39 100.79 5.9 0.13
0.20 100 98.84 100.82 952.5 16.09
0.20 150 99.02 100.51 2812.7 101.16
0.20 200 99.02 100.59 5058.0 249.40

∞ 50 98.12 102.42 506.9 1.97
∞ 100 98.76 100.74 1646.2 18.33
∞ 150 98.99 100.43 2108.7 57.32
∞ 200 99.08 100.45 7967.5 513.01

Table: Results of the Euclidian TSPPD instances described in Gendreau,
Laporte & Vigo (1999)

(We are obtaining better result than Baldacci et al. (2003))
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Computational results

β n LB/Opt. Opt/TSP B&C Time

0.05 50 99.72 100.20 1.4 0.06
0.05 100 99.82 100.64 7.7 0.81
0.05 150 99.83 100.53 3.4 1.78
0.05 200 99.77 100.07 3.5 3.51

0.10 50 99.45 100.97 2.7 0.09
0.10 100 99.75 100.86 4.8 0.82
0.10 150 99.77 100.60 9.4 2.99
0.10 200 99.70 100.23 4.9 4.42

0.20 50 99.43 101.08 5.0 0.13
0.20 100 99.66 100.98 26.2 2.23
0.20 150 99.66 100.79 28.4 7.20
0.20 200 99.70 100.46 14.5 8.60

∞ 50 99.41 101.28 7.2 0.16
∞ 100 99.69 100.63 16.1 1.52
∞ 150 99.53 101.33 6.2 2.33
∞ 200 99.40 100.52 17.8 10.38

Table: Results of the symmetric TSPPD instances described in Gendreau,
Laporte & Vigo (1999)
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An overview of the m-PDTSP
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Asymmetric Model for the m-PDTSP:

min
∑
a∈A

caxa

subject to

x(δ−({i})) = 1 for all i ∈ V

x(δ+({i})) = 1 for all i ∈ V

x(δ+(S)) ≥ 1 for all S ⊂ V

xa ∈ {0, 1} for all a ∈ A∑
a∈δ+({i})

f k
a −

∑
a∈δ−({i})

f k
a = qi for all i ∈ V , k = 1, . . . ,m

0 ≤
m∑

k=1

f k
a ≤ Qxa for all a ∈ A.



An overview of the m-PDTSP

Preliminary observations:

I The Stacker Crane Problem, CDARP and PDTSP are
particular case of the m-PDTSP (also the TSPPD, CTSPPD
and 1-PDTSP).

I Some instances of 20 customers cannot be solved (using
CPLEX as black box).

I A tour can be feasible in one direction and non-feasible in the
other direction.

Future research.

I Heuristics procedures.

I Separation procedures for and branch-and-cut algorithm.
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An overview of the m-PDTSP

That’s all
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