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DEIOC, Facultad de Matemáticas, Universidad de La Laguna,
38271 La Laguna, Tenerife, Spain,
e-mail: {hhperez,jjsalaza}@ull.es

Abstract

This paper treats of a generalization of the Traveling Salesman Problem (TSP)
called Multi-commodity one-to-one Pickup-and-Delivery Traveling Salesman Prob-
lem (m-PDTSP) in which cities corresponds to customers providing or requiring
known amounts of m different objects, and the vehicle has a given upper-limit ca-
pacity. Each object has exactly one origin and one destination, and the vehicle must
visit each customer exactly once. This justifies the words “one-to-one” and “trav-
eling salesman problem” in the name of the problem, respectively. We introduce a
Mixer Integer Linear Programming model for the m-PDTSP, discuss decomposition
techniques and describe some strategies to solve the problem based on a branch-
and-cut procedure. Preliminary computational experiments on randomly generated
euclidian instances are shown.

Key words: Traveling Salesman; Pickup-and-Delivery; Branch-and-Cut;
Dial-a-Ride.

1 Introduction

Many practical applications in transportation involve routing and delivery op-

timization problems. This paper considers the following particular problem.

A collection of objects is located at points (sources) in a space, and each one

is associated to another point (destination) where it must be delivered. A ve-

hicle is available in a specific point (depot) to carry out the collections and

deliveries of the objects. Each object is associated to a weight and the vehicle

is associated with a weight capacity. The travel distance between two points is
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also known. Then the multi-commodity one-to-one pickup-and-delivery travel-

ing salesman problem (m-PDTSP) is the problem of finding a route for the

vehicle starting and ending at the depot such that it pickups and deliveries all

the objects satisfying the capacity limitation and minimizing the total travel

distance.

We will assume in this paper that once an object is loaded on the vehicle then

it stays on it until it is delivered to its destination. In other words, an object

cannot be dropped at intermediate locations and picked up again later by the

vehicle. This is named the non-preemptive version of the m-PDTSP.

Another hypothesis in this paper is that a destination point of an object is

allowed to be the source point of another object, but the same location point

is not allowed to be visited more than once by the vehicle. This implies that

the route of the vehicle must be a simple cycle and justifies the words traveling

salesman in the name of the problem, thus means that it is a single-vehicle

problem.

Our work approaches the m-PDTSP where the object weights and the vehicle

capacities are general numbers. We keep the assumption that all the objects

are different, thus the term multi-commodity in the name of the problem.

See Chalasani and Motwani [12], Anily and Bramel [1] and Hernández and

Salazar [22,23] for articles on the case where all the objects are identical (i.e.,

only one commodity is moved by the vehicle from many sources to many

destinations). We also keep the assumption that each object is associated

with exactly one source and exactly one destination, thus the term one-to-one

in the name of the problem. Still, the mathematical model and the algorithm

can be easily extended to address the more general problem for the “multi-

commodity many-to-many” version of this TSP with pickups and deliveries.

The literature contains many excellent articles on similar problems involv-

ing the delivery of different commodities (objects or persons) with a single

vehicle. The problems are typically termed Dial-a-Ride problems when they

also consider time-window constraints (see, e.g., Psaraftis [30,32]). There are

a lot variants depending on different requirements, features and optimization

functions. We next describe some variants of the DARP.
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In the most simplest capacitated version, the Capacitated Dial-a-Ride Problem

(CDARP) where the a single vehicle should move one unit of a commodity

(say, a person) from its origin to its destination with a limited capacity Q and

time windows are not considered. Psaraftis [30] gives an dynamic programming

algorithm. He also considers a the version where the requests are introduced

in the model in real-time (dynamic version of the DARP). Guan [20] studies

the preemption and non-preemption CDARP on some graphs (paths, cycles

and trees).

When the capacity Q = 1, the non-preemptive CDARP is known as the

Stacker Crane Problem. Fredericson, Hecht and Kim [18] show a worst-case

heuristic algorithm for this problem.

When there is no vehicle capacity, the non-preemptive CDARP is called the

Pickup and Delivery Traveling Salesman Problem (PDTSP). The PDTSP as-

sumes that one vertex is only a origin or a destination of a commodity. Some

references about PDTSP are Kalantari, Hill and Arora [26], Kubo and Kasugai

[27], Healy and Moll [21], Renaud, Boctor and Ouenniche [34], Renaud, Boctor

and Laporte [33], Ruland [37] and Ruland and Rodin [38]. In [26] the PDTSP

is referred to as TSPPD, in [21] it is referred to as CDARP and in [37] and [38]

it is referred as Pickup and Delivery Problem (PDP). The problem which one

vertex can be the origin and/or destination of various commodities is called

TSP with Precedence Constraints (TSPPC). Bianco, Mingozzi, Riccardelli and

Spadoni [6] describes a dinimic programming algorithm for this problem. The

asymmetric version, called the Asymmetric TSP with Precedence Constrains

(ATSPPC) or Sequential Ordering Problem, have been studied by Balas, Fis-

chetti and Pulleyblank [5], Ascheuer, Jünger and Reinelt [4] and Gouveia and

Pesneau [19]. The m-PDTSP is the capacitated version of the ATSPPC.

Most of articles on the Dial-a-Ride problem consider additional features as

multi-vehicle version, time windows and/or dynamic requests. Moreover, the

objective function is not always to minimize the total cost of the routes, but

the inconvenience of the users with a function of the waiting and ride times.

Also, minimizing the number of vehicles is an objective in some versions of

the multi-vehicle DARP.
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All the following references for the DARP consider some kind of time win-

dows. In our knowledge, the unique DARP with time windows that consider

dynamic requests is shown in Madsen, Ravn and Rygaard [28] where a heuris-

tic algorithm for a multi-vehicle version is described. When the request are

known beforehand there are several references. Psaraftis [32,31] studies the

problem with time windows and he shows an exact and a heuristic algorithms

for a single vehicle. Sexton and Bodin [39,40] give heuristic procedures and

Desrosiers, Dumas and Soumis [17] present an exact algorithm based on dy-

namic programming for the single vehicle version also. Heuristic algorithms

for the multi-vehicle version are presented in Jaw, Odoni, Psaraftis and Wil-

son [25], Bodin and Sexton [8], Ioachim, Desrosiers, Dumas and Solomon [24],

Toth and Vigo [42,43], Borndörfer, Grötschel, Klostemeier and Küttner [9],

Wolfler-Calvo and Colorni [44], and Cordeau and Laporte [13]. A recent ar-

ticle Cordeau [14] presents a branch-and-cut algorithm for the multi-vehicle

DARP with time windows. Cordeau also considers the transportation of group

of people (i.e., the the quantity demanded is grater than one). Finally, we ref-

erence the survey of Courdeau and Laporte [15] where articles which deal with

DARP are classified.

The multi-vehicle version of the DARP is known as Pickup and Delivery Prob-

lem (PDP). Many times this problem has other features as time windows and

precedence constraints. Recent works about that are Sigurt, Pisinger and Sig

[41], Ropke and Pisinger [36] and Ropke, Cordeau and Laporte [35].

Anily and Hassin [3] introduce the Swapping Problem, a more general prob-

lem where several commodities must be transported from many origins to

many destinations with a vehicle of limited capacity following a non-necessary

Hamiltonian route, and where a commodity can be temporarily stored in an in-

termediate customer (i.e., preemption is allowed). Anily and Hassin [3] present

an worst-case heuristic algorithm for the Swapping Problem with a ratio of

2.5 based on an algorithm for the TSP. The Swapping Problem on a line is

analyzed in Anily, Gendreau and Laporte [2].

This article is structured as follows. Section 2 describes a mathematical mod-

els and a decomposition method for the m-PDTSP. Section 3 shows valid
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inequalities for these models. Section 4 shows some computational results of

four algorithms for the m-PDTSP. Finally, Section 5 proposes further exten-

sion of this methodology.

2 Mathematical Models

This section presents a Mixed Integer Linear Programming (MILP) formula-

tion for the m-PDTSP and some variations of this model. Let us start by intro-

ducing some notation. The depot will be represented by two nodes 0 and n+1,

and customers by a vertex i, for i = 1, . . . , n. Thus, V := {0, 1, . . . , n, n + 1}
is the vertex set of a complete directed graph G = (V, A). Note that a cus-

tomer i can be source of various commodities and the destination of other

commodities. For each pair of locations (i, j) ∈ A, the travel distance (or

cost) cij of going from i to j is given. There are m commodities (objects),

each one k ∈ K := {1, . . . ,m} associated with a weight qk, with a source

sk ∈ {0, 1, . . . , n} and with a destination dk ∈ {1, . . . , n, n + 1}. The ca-

pacity of the vehicle is represented by Q and is assumed to be a positive

number. For any subset S ⊂ V , let δ+(S) := {(i, j) ∈ A : i ∈ S, j 6∈ S},
δ−(S) := {(i, j) ∈ A : i 6∈ S, j ∈ S} and when S = i (with only one element)

we write δ+(i) and δ−(i).

The m-PDTSP is the problem of finding a Hamiltonian path (i.e., a path

traversing each node exactly once) from 0 to n+1 such that all the commodities

are collected and delivered without ever violating the vehicle capacity and

minimizing the total distance.

For each node i ∈ V , let K+
i := {k ∈ K : sk = i}, K−

i := {k ∈ K : dk = i},
q+
i :=

∑{qk : k ∈ K+
i } and q−i :=

∑{qk : k ∈ K−
i }. The source and destination

of each commodity imply a precedence constraint between some pairs of nodes

in V . Because each node in the graph G must be visited at most once, it is

fundamental for the existence of a m-PDTSP solution that the precedence

constraints induce an acyclic subgraph in G (see Bianco, Mingozzi, Riccardelli

and Spadoni [6]). If each node is the source of at most one commodity and/or

the destination of at most one commodity, and if the precedence constraints
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induce an acyclic subgraph in G then condition

Q ≥ max{q+
i , q−i : i ∈ V } (1)

is a necessary and sufficient condition for the existence of a m-PDTSP solution.

Similarly, if K+
0 ∪ K−

n+1 = K then max{q+
i , q−i : i ∈ V } = max{qk : k ∈ K},

and therefore the condition (1) is also necessary and sufficient for the m-

PDTSP feasibility (for example, the Hamiltonian path that visits the cus-

tomers in {dk : k ∈ K+
0 } before any customer in {sk : k ∈ K−

n+1} ).

2.1 A Mixed Integer Linear Programming

To provide a mathematical model to m-PDTSP, for each arc a ∈ A, we intro-

duce a 0-1 variable

xa :=

1 if and only if a is routed,

0 otherwise,

and the 0-1 variable

fk
a := the load of commodity k in the vehicle when routing a.

For simplicity in next notation, we assume that K+
0 = K−

n+1 = ∅ (i.e., the

depot does not give or receive any load). Hence, the flow-variables fk
a can be

fixed to zero for all k ∈ K and all a ∈ δ+(0) ∪ δ−(n + 1). The m-PDTSP can

be formulated as:

min
∑
a∈A

caxa (2)

subject to
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∑
a∈δ−({i})

xa = 1 for all i ∈ V \ {0} (3)

∑
a∈δ+({i})

xa = 1 for all i ∈ V \ {n + 1} (4)

∑
a∈δ−(S)

xa ≥ 1 for all S ⊂ V : 0 6∈ S (5)

∑
a∈δ+(S)

xa ≥ 1 for all S ⊂ V : n + 1 6∈ S (6)

xa ∈ {0, 1} for all a ∈ A (7)

∑
a∈δ+({i})

fk
a −

∑
a∈δ−({i})

fk
a =


qk if i = sk

−qk if i = dk

0 otherwise

for all i ∈ V and k ∈ K (8)

0 ≤
∑
k∈K

fk
a ≤ Qxa for all a ∈ A. (9)

Constraints (3)–(7) impose that x must represent a simple cycle from 0 to

n + 1. Such a path is a m-PDTSP solution when there exists a path from

sk to dk for each commodity k as represented by equations (8) such that the

capacity constraint (9) is satisfied. It is not necessary to impose the integrality

conditions on the variables fk
a defining the path for each commodity.

This mathematical model is a MILP model and it has a large number of

variables due to the fk
a variables. Therefore, it is unlikely that a general-

purpose MILP solver (like Cplex) can use it to solve the m-PDTSP with a

medium number of commodities and location points. However, we are going

to show another variants to try to solve the m-PDTSP.

2.2 Fixing Variables and Strengthen the MILP Model

Of course, some variables can be fixed to zero. Taking account the precedence

constraints that induce this problem, an arc variable xij can be fixed to zero

if:

• i = 0, sk 6= 0 and j = dk,

• i = sk, j = n + 1 and n + 1 6= sk, or

• i = dk and j = sk.

Looking a the capacity of the vehicle, a arc variable xi,j can be fixed to zero if
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• ∑
i=dk∨(j=dk∧i6=sk) qk > Q,

• ∑
i=sk∨j=dk

qk > Q, or

• ∑
(i=sk∧j 6=dk)∨j=sk) qk > Q.

This quantities are lower bounds of the load of the vehicles going into, throwing

and going out (i, j) if the arc (i,j)is routed, respectively.

Obviously, if xij = 0 then fk
ij = 0 for all k. But fk

ij can be fixed to zero if:

• i = 0 and i 6= sk,

• j = n + 1 and j 6= dk,

• i = dk, or

• j = sk.

We present a strengthen the of the relaxation of model (3)–(9). That is, we

can see that some flow-variables can be “fixed”:

fk
ij = qkxij if i = sk or j = dk. (10)

Similarly to other capacitated transportation problems (as in the Capacitated

Vehicle Routing Problem) when they are formulated with flow (or load) vari-

ables, the capacity constraint (9) can be strengthen. That is, given an arc

a = (i, j) the load the vehicle cannot be greater than Q − ∑
dk=i qk +

∑
sk=i

(the vehicle have to have enough free space to pickup the load of customer i)

and cannot be greater than Q−∑
sk=j qk +

∑
dk=j qk (the vehicle have to have

enough free space to pickup the load of customer j). Thus inequality

∑ ∑
k∈K

fk
ij ≤ xk

Q−max

0,
∑
dk=i

qk −
∑
sk=i

qk,
∑
sk=j

qk −
∑
dk=j

qk


 for all (i, j) ∈ A.

(11)

is valid.

2.3 Projecting out the Flow Variables

From the model (3)–(9), we can the flow variables (i.e., equations (8) and (9))

if we insert appropriate constraints on the x variables. That is, if we have an
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algorithm to find an violated inequalities on the x ...

2.4 A “Double” Decomposition Technique

This section shows a procedure to find an optimal solution of the model (2)–(9)

without explicitly working with a single program with all the variables. The

idea uses the fact that the fk
a variables are continuous variables whose existence

certificates that a route described by x is feasible for the m-PDTSP. Then, by

using Farkas’ Lemma in Linear Programming, it is possible to work with only

the variables xa. The procedure follows the classical scheme of the Benders’

Decomposition (Benders [10]) and Dantzig-Wolfe Decomposition (Dantzig and

Wolfe [16]), and it is next described.

Let us consider a vector x′ satisfying (3)–(6). In order to have a guarantee

that it is an m-PDTSP solution, constraints (8)–(9) require the existence of

the variables fk
a defining the paths to move each commodity on the route.

An alternative way of writing this requirement on x′ is the following. Let Pk

be the collection of all paths in G from sk to dk. For each path p ∈ Pk let

zp = [zp
a : a ∈ A] be a 0-1 vector such that

zp
a :=

1 if and only if arc a is in path p,

0 otherwise.

Then, x′ is a feasible solution for the m-PDTSP if and only if there is a solution

λ for the following linear system:

∑
k∈K

qk

∑
p∈Pk:zp

a=1

λp ≤ Qx′a for all a ∈ A, (12)

∑
p∈Pk

λp = 1 for all k ∈ K, (13)

λp ≥ 0 for all p ∈ Pk and all k ∈ K. (14)

This system impose that there must be a path for each commodity such that

all together follow the route defined by x′ satisfying the capacity constraint

on each arc.

Clearly, the system (12)–(14) has much more variables than the system (8)–
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(9), which is a disadvantage for checking the m-PDTSP feasibility of a given

vector x = x′. Nevertheless, by using Farkas Lemma the vector x′ will be m-

PDTSP feasible if and only if all the rays (u, v) = [ua : a ∈ A; vk : k ∈ K] in

the cone

qk(
∑

a∈A:zp
a=1

ua) + vk ≥ 0 for all k ∈ K, p ∈ Pk, (15)

ua ≥ 0 for all a ∈ A, (16)

vk ≤ 0 for all k ∈ K, (17)

satisfy ∑
a∈A

Qx′aua +
∑
k∈K

vk ≥ 0.

The variable ua represents the dual variable associated to each inequality in

(12) and vk represents the dual variable associated to each equation in (13).

Note that we can restrict vk to be non-positive since each equation in (13) can

be replaced by the inequality
∑

p∈Pk λp ≥ 1 without loss of generality.

Now the feasibility check is transformed into the optimization problem of

minimizing
∑

a∈A Qx′aua +
∑

k∈K vk over the constraints (15)–(17). At first

glance one cannot see any advantage on this new reformulation due to the

large number of constraints in (15). Fortunately, it is not a disadvantage since

the resolution of this problem can be replaced by an iterative procedure where

a relaxed problem (i.e., a problem with only some constraints) is solved and

possibly strengthened with some missing constraints. More precisely, at each

iteration, the problem is determined by a subset of paths Qk ⊆ P k for each

commodity k ∈ K. If it is not unbounded then 0 is the optimal solution of

the full problem, and therefore the vector x′ is m-PDTSP feasible. Otherwise,

there is a ray (u′, v′) such that
∑

a∈A Qx′au
′
a +

∑
k∈K v′k < 0 and we need to

check if a path in Pk \Qk is necessary. This check consists on finding (if any)

a path p ∈ Pk such that

∑
a∈A:zp

a=1

u′a ≤ −v′k/qk

which can be done by solving a Shortest Path Problem from sk to dk in G

where the distance of an arc a is given by the u′a. Let p′ be a shortest path and

l′ the total distance of p′. If qkl
′+v′k < 0 then we must enlarge Qk := Qk∪{p′}
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and consider a new iteration with an strengthened problem. Otherwise, no

path is missing from the current problem and therefore

∑
a∈A

Qu′axa ≥ −
∑
k∈K

v′k (18)

is a valid inequality violated by x′ that must be considered in addition to (3)–

(6). The inequality (18) is termed Benders’ cut since it is derived as in the

classical Benders’ decomposition approach to a MILP model. The problem

of checking if there exists a violated Benders’ cut for a given x′ is termed

separation problem, and its resolution requires a column-generation algorithm

if the problem is formulated using (12)–(14), or a cutting-plane approach if

the problem is formulated using (15)–(17).

The above scheme leads to a decomposition technique for solving the mathe-

matical model (2)–(9). Instead of solving the full model with all the fk
a vari-

ables, the technique consists of solving a 0-1 integer linear programming model

with the binary variables xa, minimizing (2) subject to constraints (3)–(6) and

(18) for all (u′, v′) rays for the cone (15)–(17). To solve this problem in a more

efficient way, we propose a branch-and-cut procedure (see, e.g., Caprara and

Fischetti [11]) where two optimization problems are iteratively solved. The

first problem is named master problem and it is the linear relaxation of the

problem minimizing (2) subject to (3)–(6) and some (18). The second prob-

lem is named subproblem and it is used to generate missed constraints (18) as

they are necessary. At each iteration the master problem produces an optimal

(likely non-integer) solution x′, and the subproblem finds (if any) a violated

Benders’ cut inequality. When no violated Benders’ cut is generated by the

subproblem, then the whole procedure stops with the optimal solution x′ if it

is an integer vector, or the procedure requests a branching phase to continue

(possibly) generating new Benders’ cuts.

A non-standard idea in this Benders’ decomposition approach is that the sub-

problem can be applied when x′ is a non-integer vector. In this way, each mas-

ter problem is a linear program and therefore it can be solved with less com-

putational effort. The counterpart is that a branching procedure is required

to further guarantee the integrality of the solution. Alternatively, another ap-

proach based on the same decomposition could solve the master problem with
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the integrality constraints on the variables, and then the whole procedure

would be a cutting-plane approach. Clearly, this second approach consumes

more computational effort to solve the master problem at each iteration. We

have conducted experiments with both approaches and they are discussed in

the next section.

3 Valid inequalities

As the m-PDTSP is a capacitated version of the ATSPPC, all valid inequal-

ities for the ATSPPC are valid for the m-PDTSP. We show some of them

implemented in the algorithms. Also we show inequalities derived from the

capacity requirement.

...

3.1 Capacity Constraints

x(δ+(S)) ≥ r(S) for all S ⊂ V and 0, n + 1 ∈ V \ S, (19)

where

r(S) = max{1, 1

Q

∑
sk∈S, dk 6∈S

qk,
1

Q

∑
sk 6∈S, dk∈S

qk}

is a lower bound of the number of times that the vehicle has to go inside/outside

the customer set S. Observe that
∑

sk∈S, dk 6∈S qk is a lower bound for the load

transported from S to V \ S and
∑

sk 6∈S, dk∈S qk is a lower bound for the loas

transported from V \ S to S.

3.2 Predecessor and Successor Inequalities

For each commodity k there is a precedent relation between sk and dk. In other

words, sk have to visited before dk. This condition can used to strengthen the

subtour elimination constraints (see, e.g., Balas, Fischetti and Pulleyblank

[5]). Hence teh following inequalities are valid for the one-to-one m-PDTSP:
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!!!! Ojo hay que unificar la notación !!!!

The predecessor-inequalities

x(S \ π(S), S \ π(S)) ≥ 1 for all S ⊂ V \ {0, n + 1}, (20)

where π(S) denotes the set of predecessor customers of S and S the customers

not in S (including 0 and n + 1).

The above inequalities can be rewritten as

x(S \ π(S), S ∪ π(S)) ≤ |S \ π(S)| for all S ⊂ V \ {0, n + 1},

because of the degree equations (3) and (4).

The successor-inequalities

x(S \ σ(S), S \ σ(S)) ≥ 1 for all S ⊂ V \ {0, n + 1}, (21)

where σ(S) denotes the set of successor customers of S and S the customers

not in S (including 0 and n + 1).

3.3 The Precedence Cycle Breaking Inequalities

Let S1, . . . , §l ⊂ V \ {0, n + 1} (l ≥ 2) disjoint node sets such that

σ(Si) ∩ Si+1 6= ∅

for i = 1, . . . , l (or equivalently Si∩π(Si+1) 6= ∅ for i = 1, . . . , l) with Sl+1 = S1.

Then the inequality

l∑
i=1

x(Si, Si) ≤
l∑

i=1

|Si| − l − 1 (22)

is valid for the m-PDTSP. See, for example [5] for details and a proof for the

ATSPPC.

A simple form of (22) arises when l = 2 and |S2| = 1, in this case the inequality

becomes

x(S1, S1) ≤ |S1| − 2
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. This is a strengthen of the subtour elimination constraints for S1.

4 Computational Results

The algorithms described in the previous section have been implemented in a

computer program and tested on solving some randomly-generated instances.

This section presents the results of the conducted experiments.

The algorithms were written using C programming language in a Personal

Computer with AMD Athlon 2.0 Ghz and running Windows XP. We used the

Cplex 9.0 branch-and-cut framework for embedding our code implementa-

tions.

Since there are no benchmark instances in the literature for the m-PDTSP,

we have transformed the proposed for the ATSPPC (Class 1 ) in he following

way. Each precedence relation (i, j) generates a commodity (say) k. Thus

commodity k must be moved from i to j. There are considered two different

transformations depending on the values of qk. Fist qk is fixed to 1 for all

commodities and second qk is a random number in [1, 5]. Finally, different

capacities of the vehicle Q are considered also. Thus, each instance for the

ATSPPC correspond to many instances for m-PDTSP with different qk (fixed

and random) and different Q.

Also, we have using the following generator (Class 2 ), similar to the described

in Mosheiov [29] for the TSP with Pickups and Deliveries. We have generated

n random points in the square [−500, 500] × [−500, 500] which correspond

to the customers. The depot is located at point (0,0). The travel cost cij

between points i and j was computed as the Euclidean distance between the

two location points. The relations of origins and destination are generated

as in [4]. Iteratively, the generator chooses an arc (i, j); if it is not generates

a cycle, the process is repeated until m relation are generates. The number

of commodities m is in {5, 10, 15}. Also different capacity Q for each m are

considered (Q ∈ {500, 50, 45, . . . , 15}).

Finally, a third class is generated (Class 3 ). The vertices are generated as the

14



Class 2 but each vertex is the origin or destination of a unique commodity.

Thus, vertex i is the depot if i = 0 or i = n + 1, i is the origin of commodity

k if i = 2 ∗ k + 1 and i is the destination of commodity k if i = 2 ∗ k + 2. The

quantities qk are randomly generated integers in [1, 5]. Different capacities Q

are considered also.

4.1 Testing different strategics

Each instance was solved with these approaches:

Alg. 1: Model (3)–(9) and (10).

Alg. 2: Model (3)–(9), (10) and (11).

Alg. 3: The projected model and where the subproblem is solved as the de-

composition technique described in Subsection .

Alg. 4: The projected model and where detected cuts are inserted.

Table 1 shows the average computational results of the different strategies.

Each row corresponds to the results of ten instances. The first three columns

correspond to the number of commodities m, the number of customers includ-

ing the depot n, and the vehicle capacity Q. The following columns correspond

to the average computational time (time), the number of instances that the

algorithm does not find an integer solution before the time limit (inf.) and the

number of instances that do not end before the time limit but the algorithm

finds an integer solution (t.l.) for each strategy. The average computational

time is computed only for the instances that finish before the time limit and

(3600 seconds).

Unfortunate, the above described decomposition technique is not good solv-

ing the one-to-one m-PDTSP. The classical Benders decomposition gains the

other algorithms solving the one-to-one m-PDTSP.

!!! Se podŕıan poner tb las LB al nodo ráız peor son muy similares por los tres

algoritmos¡¡¡
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Table 1
Computational results of Class 1

Alg. 1 Alg. 2 Alg. 3 Alg. 4

name m n Q time inf. t.l. time inf. t.l. time inf. t.l. time inf. t.l.

ESC07Q3max1 6 9 3 0.22 0 0 0.23 0 0 0.14 0 0 0.14 0 0

ESC07Q15max5 6 9 15 0.20 0 0 0.23 0 0 0.13 0 0 0.13 0 0

ESC11Q3max1 3 13 3 0.20 0 0 0.25 0 0 0.20 0 0 0.22 0 0

ESC11Q15max5 3 13 15 0.22 0 0 0.25 0 0 0.22 0 0 0.19 0 0

ESC12Q6max1 7 14 6 0.41 0 0 0.34 0 0 0.25 0 0 0.22 0 0

ESC12Q5max1 7 14 5 0.80 0 0 1.33 0 0 1.09 0 0 0.36 0 0

ESC12Q4max1 7 14 4 2.63 0 0 1.91 0 0 1.34 0 0 0.42 0 0

ESC12Q20max5 7 14 20 0.48 0 0 0.31 0 0 0.27 0 0 0.22 0 0

ESC12Q15max5 7 14 15 1.61 0 0 1.72 0 0 1.31 0 0 0.34 0 0

br17.10Q5max1 10 18 5 4.19 0 0 1.78 0 0 1.00 0 0 0.06 0 0

br17.10Q4max1 10 18 4 0.00 0 1 0.00 0 1 0.00 0 1 0.00 0 1

br17.10Q3max1 10 18 3 260.31 0 0 483.44 0 0 516.28 0 0 166.59 0 0

br17.10Q15max5 10 18 15 3.19 0 0 1.30 0 0 3.13 0 0 0.30 0 0

br17.12Q5max1 12 18 5 5.14 0 0 11.97 0 0 0.66 0 0 0.01 0 0

br17.12Q4max1 12 18 4 0.00 0 1 0.00 0 1 0.00 0 1 0.00 0 1

br17.12Q3max1 12 18 3 1284.86 0 0 0.00 0 1 0.00 0 1 0.00 0 1

br17.12Q15max5 12 18 15 299.11 0 0 595.47 0 0 66.56 0 0 2.81 0 0

ESC25Q5max1 9 27 5 19.52 0 0 14.44 0 0 470.61 0 0 0.19 0 0

ESC25Q4max1 9 27 4 608.16 0 0 592.31 0 0 0.00 1 0 4.23 0 0

ESC25Q3max1 9 27 3 0.00 0 1 1143.80 0 0 0.00 1 0 85.14 0 0

ESC25Q15max5 9 27 15 16.13 0 0 12.16 0 0 0.00 0 1 0.16 0 0

4.2 Extended computational results for the best strategics

The following three tables (Tables 4.2, 4.2 and 4.2) shows several computa-

tional results results of the Algorithm 4 for the three classes of instances.
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Table 2
Computational results of Class 2

Alg. 1 Alg. 2 Alg. 3 Alg. 4
m n Q time inf. t.l. time inf. t.l. time inf. t.l. time inf. t.l.
5 11 500 0.09 0 0 0.11 0 0 0.06 0 0 0.06 0 0
5 11 30 0.09 0 0 0.11 0 0 0.06 0 0 0.05 0 0
5 11 25 0.10 0 0 0.11 0 0 0.06 0 0 0.05 0 0
5 11 20 0.10 0 0 0.11 0 0 0.06 0 0 0.05 0 0
5 11 15 0.09 0 0 0.10 0 0 0.06 0 0 0.05 0 0
5 11 10 0.13 0 0 0.15 0 0 0.07 0 0 0.05 0 0

10 11 500 0.07 0 0 0.07 0 0 0.05 0 0 0.04 0 0
10 11 30 0.06 0 0 0.07 0 0 0.05 0 0 0.04 0 0
10 11 25 0.06 0 0 0.07 0 0 0.04 0 0 0.04 0 0
10 11 20 0.06 0 0 0.07 0 0 0.04 0 0 0.04 0 0
10 11 15 0.08 1 0 0.10 1 0 0.06 1 0 0.05 1 0
10 11 10 0.05 7 0 0.06 7 0 0.04 7 0 0.04 7 0
15 11 500 0.05 0 0 0.04 0 0 0.04 0 0 0.03 0 0
15 11 30 0.03 2 0 0.04 2 0 0.03 2 0 0.03 2 0
15 11 25 0.04 4 0 0.03 4 0 0.03 4 0 0.03 4 0
15 11 20 0.03 6 0 0.04 6 0 0.03 6 0 0.03 6 0
15 11 15 0.02 9 0 0.03 9 0 0.03 9 0 0.03 9 0
15 11 10 0.00 10 0 0.00 10 0 0.00 10 0 0.00 10 0
5 16 500 5.94 0 0 6.44 0 0 67.68 0 0 1.28 0 0
5 16 30 6.48 0 0 7.24 0 0 79.91 0 0 1.27 0 0
5 16 25 5.61 0 0 6.57 0 0 89.83 0 0 1.28 0 0
5 16 20 5.43 0 0 7.28 0 0 128.47 0 0 1.28 0 0
5 16 15 8.05 0 0 11.05 0 0 161.30 0 0 1.28 0 0
5 16 10 4.23 0 0 10.25 0 0 80.79 0 0 1.25 0 0

10 16 500 4.36 0 0 4.49 0 0 7.26 0 0 0.33 0 0
10 16 30 4.49 0 0 5.94 0 0 6.96 0 0 0.32 0 0
10 16 25 4.70 0 0 7.04 0 0 8.43 0 0 0.36 0 0
10 16 20 10.39 0 0 8.77 0 0 20.68 0 0 0.53 0 0
10 16 15 13.34 1 0 17.43 1 0 12.82 1 0 0.62 1 0
10 16 10 18.30 7 0 61.54 7 0 97.72 7 0 2.84 7 0
15 16 500 0.83 0 0 0.87 0 0 0.48 0 0 0.08 0 0
15 16 30 1.05 0 0 1.02 0 0 0.42 0 0 0.08 0 0
15 16 25 1.10 0 0 1.22 0 0 0.46 0 0 0.08 0 0
15 16 20 50.99 2 0 45.41 2 0 410.23 2 0 1.71 2 0
15 16 15 131.26 4 0 261.96 4 0 244.98 4 0 3.90 4 0
15 16 10 0.00 10 0 0.00 10 0 0.00 10 0 0.00 10 0
5 21 500 1.94 0 0 4.20 0 0 91.30 0 0 0.52 0 0
5 21 30 3.77 0 0 3.94 0 0 209.85 0 0 0.40 0 0
5 21 25 6.13 0 0 2.44 0 0 255.34 0 0 0.40 0 0
5 21 20 4.06 0 0 11.10 0 0 46.95 0 0 0.40 0 0
5 21 15 2.64 0 0 2.69 0 0 124.71 0 0 0.40 0 0
5 21 10 30.88 0 0 39.66 0 0 19.37 0 2 10.51 0 0

10 21 500 25.57 0 1 22.67 0 1 277.68 0 1 114.58 0 0
10 21 30 24.61 0 1 33.50 0 1 47.06 0 2 114.69 0 0
10 21 25 28.02 0 1 40.56 0 1 58.88 0 2 114.74 0 0
10 21 20 67.29 0 1 70.28 0 1 506.93 0 2 115.16 0 0
10 21 15 296.89 0 2 460.29 0 2 1026.23 1 3 133.08 0 0
10 21 10 941.55 3 3 720.43 3 2 642.42 4 3 112.08 2 2
15 21 500 927.45 0 2 899.81 0 2 157.99 0 5 204.03 0 0
15 21 30 208.16 0 5 60.06 0 5 770.93 0 5 215.24 0 0
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Table 3
Computational results of Class 3

Alg. 1 Alg. 2 Alg. 3 Alg. 4

m n Q time inf. t.l. time inf. t.l. time inf. t.l. time inf. t.l.

5 12 500 0.34 0 0 0.32 0 0 0.20 0 0 0.20 0 0

5 12 30 0.30 0 0 0.31 0 0 0.21 0 0 0.20 0 0

5 12 25 0.30 0 0 0.32 0 0 0.20 0 0 0.20 0 0

5 12 20 0.30 0 0 0.33 0 0 0.20 0 0 0.19 0 0

5 12 15 0.34 0 0 0.32 0 0 0.21 0 0 0.20 0 0

5 12 10 0.31 0 0 0.37 0 0 0.22 0 0 0.20 0 0

5 12 5 0.14 0 0 0.26 0 0 0.18 0 0 0.16 0 0

10 22 500 147.75 0 0 223.80 0 0 697.44 0 3 3.80 0 0

10 22 30 256.89 0 0 240.84 0 0 258.90 0 6 3.78 0 0

10 22 25 380.05 0 0 241.89 0 0 980.98 0 6 4.50 0 0

10 22 20 579.75 0 0 784.17 0 0 282.66 1 5 10.05 0 0

10 22 15 684.19 0 3 911.46 0 4 702.18 2 5 155.81 0 0

10 22 10 941.87 0 0 1058.80 0 5 1299.95 6 3 478.92 0 0

10 22 5 5.06 0 0 24.54 0 0 3.10 0 1 1.76 0 0

5 Further Extension

The m-PDTSP problem is the relaxed version of the so-called single-vehicle

Dial-a-ride problem (DARP) where the time window and ride time require-

ments are not considered. These requirements are the following. Let ta be the

time for routing the arc a ∈ A, and ti the time for serving the demand at

location point i ∈ V . Let [ei, li] be the time window associated with point i,

where ei and li represent the earliest and latest time, respectively. Let rk the

maximum ride time for commodity k ∈ K, i.e. the maximum travel time from

when it is collected in sk ∈ V to when it is delivered at dk ∈ V . Then, with

these new time constraints, (x′, y′) is a feasible solution if and only if the vehi-

cle arrives at each node at a time wi such that ei ≤ wi ≤ li and wdk
−wsk

≥ rk

for all k ∈ K.

By adapting the introduced model and algorithm for the m-PDTSP, it is pos-
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Table 4
Extended computational results of Class 1 and Alg. 4

Cuts Lower bounds Sep. time

name m n Q SEC others SEC others opt./PC B&C SEC others root-t time unf. t.l.

ESC07Q3max1 6 9 3 4.0 0.0 100.0 100.0 100.00 0.0 0.00 0.00 0.00 0.13 0 0

ESC07Q15max5 6 9 15 4.0 0.0 100.0 100.0 100.00 0.0 0.00 0.00 0.00 0.13 0 0

ESC11Q3max1 3 13 3 3.0 56.0 97.8 99.2 100.00 2.0 0.00 0.00 0.17 0.20 0 0

ESC11Q15max5 3 13 15 3.0 56.0 97.8 99.2 100.00 2.0 0.00 0.00 0.16 0.19 0 0

ESC12Q6max1 7 14 6 13.0 4.0 98.2 98.5 100.00 2.0 0.00 0.00 0.17 0.20 0 0

ESC12Q5max1 7 14 5 23.0 92.0 84.5 86.2 116.72 145.0 0.02 0.05 0.19 0.34 0 0

ESC12Q4max1 7 14 4 17.0 263.0 78.3 82.2 126.03 137.0 0.03 0.02 0.19 0.42 0 0

ESC12Q3max1 7 14 3 0.0 0.0 0.0 0.0 0.00 0.0 0.00 0.00 0.00 0.00 1 0

ESC12Q20max5 7 14 20 13.0 4.0 98.2 98.5 100.00 2.0 0.00 0.00 0.19 0.22 0 0

ESC12Q15max5 7 14 15 23.0 92.0 84.5 86.2 116.72 145.0 0.00 0.06 0.19 0.34 0 0

br17.10Q5max1 10 18 5 18.0 214.0 96.4 100.0 100.00 3.0 0.00 0.00 0.22 0.25 0 0

br17.10Q4max1 10 18 4 0.0 0.0 0.0 0.0 0.00 0.0 0.00 0.00 0.00 0.00 0 1

br17.10Q3max1 10 18 3 20.0 3298.0 58.5 76.0 149.09 4365.0 0.59 2.78 0.17 166.25 0 0

br17.10Q15max5 10 18 15 21.0 346.0 96.4 100.0 100.00 57.0 0.00 0.09 0.01 0.30 0 0

br17.12Q5max1 12 18 5 26.0 107.0 96.4 100.0 100.00 0.0 0.00 0.00 0.00 0.03 0 0

br17.12Q4max1 12 18 4 0.0 0.0 0.0 0.0 0.00 0.0 0.00 0.00 0.00 0.00 0 1

br17.12Q3max1 12 18 3 0.0 0.0 0.0 0.0 0.00 0.0 0.00 0.00 0.00 0.00 0 1

br17.12Q15max5 12 18 15 43.0 773.0 90.9 90.9 100.00 616.0 0.05 0.41 0.05 2.84 0 0

ESC25Q5max1 9 27 5 8.0 165.0 95.1 99.4 100.00 2.0 0.00 0.00 0.14 0.14 0 0

ESC25Q4max1 9 27 4 30.0 1199.0 83.5 91.0 113.92 262.0 0.06 0.77 0.20 4.22 0 0

ESC25Q3max1 9 27 3 65.0 4617.0 84.0 87.9 132.06 1301.0 0.39 3.84 0.25 85.30 0 0

ESC25Q15max5 9 27 15 8.0 160.0 95.1 98.8 100.00 4.0 0.00 0.00 0.14 0.16 0 0

sible to derive a new approach for solving the DARP. The main modification

consists of reducing the paths p in (15) to be feasible according to the time

constraints, thus a more elaborated algorithm for finding a shortest path must

be applied to solve the separation problem of the Benders’ cuts (18). To de-

scribe this algorithm it is convenient to compute the values wi associated to
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Table 5
Extended computational results of Class 2 and Alg. 4

Cuts Lower bounds Sep. time
m n Q SEC others SEC others opt./PC B&C SEC others root-t time unf. t.l.
5 11 15 6.6 20.5 96.7 98.0 100.00 4.1 0.00 0.00 0.03 0.07 0 0
5 11 10 6.8 29.6 94.8 97.6 103.32 7.5 0.00 0.01 0.03 0.05 0 0

10 11 20 3.7 7.5 95.0 98.3 102.12 0.6 0.00 0.00 0.00 0.01 0 0
10 11 15 4.2 17.8 90.0 95.2 111.96 1.9 0.00 0.00 0.02 0.02 1 0
10 11 10 3.0 7.7 96.3 100.0 103.02 0.0 0.00 0.00 0.00 0.00 7 0
15 11 500 0.9 6.6 97.4 99.5 100.00 0.6 0.00 0.00 0.00 0.01 0 0
15 11 30 0.6 2.3 99.8 100.0 100.00 0.0 0.00 0.00 0.00 0.01 2 0
15 11 25 0.5 0.5 98.6 100.0 101.51 0.0 0.00 0.00 0.00 0.01 4 0
15 11 20 0.5 1.8 97.9 100.0 102.26 0.0 0.00 0.00 0.00 0.01 6 0
15 11 15 0.0 0.0 100.0 100.0 100.00 0.0 0.00 0.00 0.00 0.01 9 0
15 11 10 0.0 0.0 0.0 0.0 0.00 0.0 0.00 0.00 0.00 0.00 10 0
5 16 15 30.4 247.1 91.8 94.5 100.00 399.1 0.04 0.18 0.03 1.26 0 0
5 16 10 29.9 284.9 90.1 94.0 102.68 363.6 0.02 0.13 0.03 1.21 0 0

10 16 30 24.1 264.0 90.6 94.5 100.00 90.3 0.02 0.06 0.04 0.29 0 0
10 16 25 23.9 270.6 90.5 94.5 100.04 98.7 0.01 0.07 0.04 0.33 0 0
10 16 20 25.9 333.9 89.1 93.7 101.73 123.3 0.02 0.08 0.05 0.50 0 0
10 16 15 26.1 366.8 89.0 93.0 106.34 154.0 0.01 0.10 0.05 0.58 1 0
10 16 10 21.0 580.0 84.6 90.3 108.52 414.0 0.03 0.21 0.07 2.81 7 0
15 16 30 12.0 106.7 93.3 98.0 100.00 9.2 0.00 0.01 0.03 0.05 0 0
15 16 25 12.0 107.1 93.3 98.0 100.01 9.2 0.00 0.01 0.03 0.05 0 0
15 16 20 13.5 312.5 88.7 95.4 105.82 463.1 0.02 0.28 0.05 1.67 2 0
15 16 15 14.0 694.5 78.3 86.4 117.50 866.2 0.07 0.40 0.05 3.87 4 0
15 16 10 0.0 0.0 0.0 0.0 0.00 0.0 0.00 0.00 0.00 0.00 10 0
5 21 15 29.6 169.1 95.9 97.8 100.00 48.9 0.01 0.07 0.04 0.40 0 0
5 21 10 39.7 446.9 93.5 97.2 104.01 386.8 0.05 0.43 0.05 10.51 0 0

10 21 25 36.0 722.6 91.6 96.4 100.00 2102.9 0.21 1.81 0.06 114.68 0 0
10 21 20 39.3 826.5 90.8 96.2 100.86 2127.4 0.20 1.80 0.07 115.06 0 0
10 21 15 50.1 1398.3 87.0 93.2 106.67 3519.9 0.30 2.93 0.11 133.42 0 0
10 21 10 41.8 1476.3 83.6 93.3 108.24 2158.2 0.22 1.89 0.14 112.73 2 2
15 21 500 38.2 1710.9 83.4 89.5 100.00 5140.6 0.44 4.37 0.11 204.61 0 0
15 21 30 37.8 1823.4 82.7 88.8 100.87 5565.1 0.48 4.74 0.10 214.70 0 0
15 21 25 42.8 2798.0 81.5 87.7 102.39 10647.0 1.00 9.46 0.10 649.35 0 0
15 21 20 44.6 1741.0 83.0 89.6 103.52 2240.8 0.20 2.43 0.11 64.58 1 4
15 21 15 39.0 4917.3 79.4 86.5 109.51 10894.0 1.29 10.77 0.17 1230.19 4 3
15 21 10 0.0 0.0 0.0 0.0 0.00 0.0 0.00 0.00 0.00 0.00 10 0
5 26 20 49.4 335.1 94.8 96.4 100.00 177.1 0.04 0.33 0.09 2.77 0 0
5 26 15 57.5 378.2 94.5 96.2 100.26 207.3 0.01 0.40 0.09 3.08 0 0
5 26 10 69.9 642.2 91.8 95.9 103.96 498.0 0.09 0.82 0.10 8.83 0 0

10 26 25 69.0 1179.3 89.4 92.7 100.00 865.4 0.10 1.65 0.20 22.08 0 0
10 26 20 69.7 1424.4 88.8 92.4 100.74 1079.6 0.15 2.09 0.22 30.80 0 0
10 26 15 82.3 2817.9 86.2 91.0 104.12 3680.2 0.43 7.02 0.32 216.71 0 1
10 26 10 55.0 2817.0 86.9 92.4 104.70 3399.0 0.46 6.79 0.38 194.04 1 6
15 26 500 72.0 2845.9 85.5 90.7 100.00 6952.7 0.76 10.80 0.31 328.18 0 1
15 26 30 77.9 3028.7 85.5 90.7 100.00 6132.6 0.75 11.27 0.43 388.59 0 1
15 26 25 66.7 2926.6 85.8 90.5 100.57 3701.9 0.46 7.10 0.35 216.47 0 3
15 26 20 79.8 5080.3 84.2 90.1 102.03 7574.5 1.10 14.51 0.49 1112.70 0 4
15 26 15 50.0 5241.5 84.6 92.1 108.08 2571.0 0.42 5.64 0.88 268.89 4 4
15 26 10 0.0 0.0 0.0 0.0 0.00 0.0 0.00 0.00 0.00 0.00 8 2
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Table 6
Extended computational results of Class 3 and Alg. 4

Cuts Lower bounds Sep. time

m n Q SEC others SEC others opt./PC B&C SEC others root-t time unf. t.l.

5 12 20 11.4 47.9 93.2 96.7 100.00 6.4 0.00 0.00 0.01 0.02 0 0

5 12 15 11.4 49.5 93.1 96.7 100.03 6.5 0.00 0.00 0.01 0.03 0 0

5 12 10 13.3 55.3 91.6 96.3 102.70 7.0 0.00 0.00 0.01 0.02 0 0

5 12 5 4.8 31.0 94.5 98.6 122.02 2.6 0.00 0.00 0.01 0.01 0 0

10 22 30 50.8 573.7 89.9 93.0 100.00 364.8 0.04 0.45 0.08 3.75 0 0

10 22 25 51.7 602.7 89.7 92.9 100.31 488.3 0.05 0.55 0.08 4.39 0 0

10 22 20 56.9 774.6 89.2 92.4 100.85 824.6 0.09 1.00 0.08 9.95 0 0

10 22 15 69.5 1992.8 86.0 90.1 105.23 3853.9 0.32 4.03 0.09 155.40 0 0

10 22 10 50.5 3427.1 81.1 91.0 116.01 3795.5 0.53 4.98 0.21 477.83 0 0

10 22 5 23.3 644.7 84.8 95.3 150.47 86.6 0.02 0.19 0.15 1.69 0 0

15 32 30 144.8 3807.3 86.7 90.4 100.00 9183.7 1.14 24.56 0.40 659.33 0 0

15 32 25 144.4 3998.4 86.5 90.3 100.19 7248.2 0.93 20.00 0.41 620.74 0 0

15 32 20 132.1 4688.4 84.7 90.2 103.81 12270.7 1.61 35.67 0.57 1154.04 0 3

15 32 15 122.8 5400.8 84.5 91.1 103.05 5774.5 0.93 18.45 0.96 752.43 1 5

15 32 10 119.0 6343.0 86.7 90.6 109.90 6479.0 1.61 28.81 1.14 1373.31 4 5

15 32 5 32.5 5442.7 80.4 92.7 170.34 2327.7 0.78 10.06 1.26 755.81 1 3

each solution of the master problem x′ by solving:

min{wn+1 : w0 = 0 , wj ≥ wi + ti + tijx
′
ij for all (i, j) ∈ A},

which can be done in O(|A|)-time by breadth-first search. Then, for each com-

modity k, a shortest path p′ from sk to tk must be computed considering the

time constraints. This is a folklore problem and the classical way to approach

it is by applying dynamic programming.
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berlin: Vehicle scheduling in a dial-a-ride system. In N.H.W. Wilson, editor,
Computer-Aided Transit Scheduling, volume 471, pages 391–422. Lectures Notes
in Economics and Mathematical Systems, Springer, Berlin, 1999.

[10] R. M. Burstall. A heuristic method for a job sequencing problem. Operational
Research Quarterly, 17:291–304, 1966.

[11] A. Caprara and M. Fischetti. Branch-and-cut algorithms. In M. Dell’Amico,
F. Maffioli, and S. Martello, editors, Annotated Bibliographies in Combinatorial
Optimization, pages 45–64. Wiley, New York, 1997.

[12] P. Chalasani and R. Motwani. Approximating capacitated routing and delivery
problems. SIAM Journal on Computing, 28:2133–2149, 1999.
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